Context-Aware Bit-stream Generator for
Deterministic Unary Processing

Sina Asadi and M. Hassan Najafi
sina.asadil @louisiana.edu, najafi @louisiana.edu
School of Computing and Informatics, University of Louisiana at Lafayette, Lafayette, LA, USA

Abstract—Deterministic methods of processing bit-streams
have been proposed to produce completely accurate results with
stochastic logic. Real-valued numbers in the [0,1] interval are
converted to unary bit-streams and processed using relatively
prime stream length, clock division, and rotation methods. Long
latency is the main issue with these deterministic methods. To
process m n-bit precision numbers, bit-streams of 2™*" bits
must be generated. In this work, we propose a context-aware
deterministic bit-stream generator to improve the performance
of these methods. The proposed design improves the performance
up to 90% compared to the conventional architecture.

Index Terms—Stochastic computing, unary computing, de-
terministic bit-stream processing, bit-stream generator, context-
aware design, hardware accelerator.

I. OVERVIEW

Stochastic computing (SC) [1], [2], [9] has been used for
low-cost and noise-tolerant implementation of arithmetic func-
tions. Complex operations can be implemented using simple
logic gates (e.g., multiplication operation can be implemented
using a single AND gate). Input data is represented by
uniformly distributed random (i.e., interleaved) or unary (i.e.,
first all "1’s followed by all ’0’s or vise versa) bit-streams.
The ratio of the number of ones to the length of the bit-
stream determines the bit-stream value in this paradigm. For
example, 10100 is a representation of 0.4 in SC. While this
unconventional representation of data is not compact compared
to the conventional weighted binary radix representation, it
insures the computation against soft errors (i.e., bit flips). All
digits have equal weight and a single bit-flip results in a small
error in the represented value.

Inaccuracy of processing bit-streams, however, has been the
main issue with the conventional stochastic designs. Random
fluctuations in generating bit-streams and correlation between
bit-streams lead to results that are only approximately correct.
Some deterministic methods of processing bit-streams [3],
[6] were introduced recently to produce completely accu-
rate results with SC constructs. Relatively prime bit-stream
lengths [6], clock dividing bit-streams, and rotation of bit-
streams [3] are the three methods that guarantee deterministic
and accurate processing of bit-streams. These methods were
initially proposed based on unary bit-streams. Fig. 1 exem-
plifies the clock division and the rotation methods based on
unary bit-streams. Authors in [7] enhanced the performacne of
the three deterministic methods by generating pseudo-random
but accurate deterministic bit-streams. More recently, authors
in [8] proposed two fast-converging deterministic methods of

1000 1000 1000 1000
1/4 \| 1000 1000 10000000 3/16

AND
3/4 111111111111 0000 /(a)

11001100 1100 1100 N
2/4 AND 11000100 10001100 g/16
3/4 111001111011 1101 (b)

Fig. 1. Examples of deterministic bit-stream-based multiplication using (a)
clock division (b) rotation methods [3].

processing bit-streams based on low-discrepancy (LD) bit-
streams. They used Sobol sequence-based LD bit-streams to
produce high-quality deterministic results.

The pseudo-random linear feedback shift register (LFSR)-
based [7] and the LD Sobol-based [8] deterministic methods
converge to acceptable results faster than the initial unary-
based methods. However, a higher power consumption in gen-
erating pseudo-random numbers and a higher hardware-cost
in generating Sobol numbers make the unary-based methods
more efficient for the cases that completely accurate results
are expected. For such cases, the processing time of different
methods is the same. Therefore, the unary-based methods
that are constructed based on counters have a lower power
consumption and a lower hardware cost. The unary-based
methods, further, work well with an analog interpretation of
the bit-streams, where the value is encoded as the fraction of
time the signal is high and represented using time-encoded
pulse signals [5], [6].

A common property to all these deterministic methods of
processing bit-streams is that producing completely accurate
result requires generating and processing bit-streams for 27"
cycles where m is the number of inputs and n is the precision
of data. For example, processing two 8-bit precision numbers
requires generating 2'6-bit bit-streams in 2! cycles. The pro-
cessing time increases exponentially by increasing the number
of inputs and the precision of data. This long processing time
further translates to very high energy consumption (energy
= power X time), making deterministic bit-stream processing
energy-inefficient for applications that completely accurate
results are expected.

The conventional bit-stream generator used in the determin-
istic methods generates and processes bit-streams regardless
of the values of the input data. Whether the input is 128/256
(=1/2) or 13/256, the same length bit-stream is generated.
While 13/256 requires at least 256 bits to be precisely
represented, 128/256 can be represented accurately using a

short stream of only 2 bits (e.g. 10 or 01). In this work,
we show that context-aware generation of bit-streams can
significantly improve the processing time of the deterministic
methods. We propose a control unit to enhance the bit-stream
generator of the deterministic designs. The proposed controller
determines the minimum precision required for each input data
and dynamically adjusts the system to work for the minimum
number of operation cycles sufficient to produce accurate
result.

II. DETERMINISTIC BIT-STREAM GENERATOR

To process data with the deterministic bit-stream methods
we need to first convert the data from the conventional binary
to the bit-stream representation. In this section, we first discuss
the current binary-to-bit-stream converter used in the structure
of the three deterministic methods. We then discuss our
proposed context-aware bit-stream generator.

A. Conventional Design

Fig. 2 shows the conventional structure of a binary-to-bit-
stream converter (a.k.a. stochastic number generator (SNG)
or converter module [3]) currently used in the deterministic
methods of processing bit-streams. An increasing/decreasing
number from an up/down counter is compared to a constant
number (based on the input data) and the output of comparison
produces one bit of the bit-stream in each cycle. A one is
generated at the output of the comparator if “Number Source”
< “Constant Number”. A zero is generated otherwise.

(n-bit) Number Source
(Up/Down Counter)

1111111000000000
0000000001111111

(n-bit)
Comparator

(n-bit) Constant Number
(register)

Fig. 2. Conventional Binary-to-Unary Bit-stream Converter

Fig. 3 depicts the conventional architecture of a determin-
istic bit-stream processing system based on the clock division
method of [3]. m inputs are converted from binary-radix to bit-
stream representation using m converter modules. The system
runs for 2*™ cycles to produce the correct (completely
accurate) result. The processing is stopped by sending a stop
signal to the bit-stream-to-binary converter (BBC) unit. As
shown in Fig. 3, the stop signal is produced at no additional
hardware cost by using the same counters used in the converter
modules. The signal turns to 1 when the system operates for
exactly 2""*™ cycles.

B. Proposed Context-Aware Design

1) Structure for Completely Accurate Results: The conven-
tional architecture generates bit-streams regardless of the value
of the input data. Multiplying 10/16 (1010 in binary radix) and
8/16 (1000 in binary radix) with the conventional architecture
requires the same number of cycles as multiplying 9/16 and
15/16. In both cases, the system runs for 24+4(=256) cycles
to produce the correct result. The deterministic methods of
processing bit-streams, however, can produce the correct result

Binary To Bit-stream
Input #1 — (BTB) #1
n-bit Counter
CLK Full
SPU BBC
Input#2 —- BTB #2 (STOCHASTIC Output | (Bitstream
i PROCESSING to Binary
CLK E"blt Counter UNIT) Converter)
Full- 7
: |
F———t e —— 1
|
Input #m—="1
| BIB#m
I In-bit Counter
CLK *i> Fullj Stop signal:

Fig. 3. Conventional architecture of a deterministic bit-stream processing
system based on the clock division method of [3].

of multiplying 10/16 and 8/16 in only 23! (=16) cycles if
effectively change 10/16 to 5/8 and 8/16 to 1/2, and represent
each input using its minimum required bit-stream length (i.e.,
8 and 2 bits, respectively). In this case, running the system for
a larger number of cycles than 16 cycles wastes the time and
most importantly the energy resources of the system.

——| n-bit Modified Counter

‘ L [MsB
B bit 1010100010001000
en Comparator
‘ | . ’—LSE—> LéB
n-bit Xn | Xn1]| ... | X2 | X1 |Constant
Input Register

4 Control Unit ‘

Fig. 4. Proposed bit-stream generator with Control Unit (CU) and Modified
Counter (MC)

Fig. 4 shows our proposed context-aware bit-stream gen-
erator. The control unit (CU) reads the input data from
the constant register and determines the minimum bit-width
necessary to precisely present the input value. Fig. 6 shows
how CU produces the control signal for A=10/16 (or 1010
in binary radix). CU sends 011 to a modified counter (MC),
forcing it to work as a 3 bit counter (counting from 0 to 7).
Fig. 5 shows the structure of a 4-bit MC. The output bits of MC
are connected to the comparator in reverse order, generating
a Sobol number in each cycle'. The comparator, therefore,
compares the effective bits of the constant register (e.g., 101
in 1010 and 1 in 1000) to a new Sobol number in each cycle.
This results in converting the input value to a fast converging
LD bit-stream, instead of generating a unary bit-stream, but
with the same hardware cost as a unary stream generator. LD
bit-streams are preferred to unary bit-streams as they enjoy
the progressive precision of random bit-streams while produce
deterministic and accurate result [8]. Fig. 7 shows the general
structure of an n-bit CU.

Fig. 8 depicts our proposed context-aware architecture for a
deterministic bit-stream processing system. The system oper-

IThe simplest Sobol sequence can be generated by simply reversing the
output bits of a counter [4]

(cs (cs

RESET RESET RESET

2nd bit) | 1stbit)
1

Vaa

Full Signal—>

Fig. 5. 4-bit Modified Counter

(4-bit) Constant Register

(Input)
1010+ | 1 0 1 0

CcU CS3 0
(Control | o

2 _J>——CS1——> 1

Fig. 6. A 4-bit Control Unit generating control signals for 10/16

(n-bit) Constant Register

(n-bit)

Input | Xn

Xn1 X3

CU
(Control
Unit)

Fig. 7. n-bit Control Unit

ates for 2@17Q2++Q@m cycles to produce the correct result,
where (; is the required precision for input i and m is the
number of independent inputs in the system.

Input #1 —»i Binary To Bit-stream
(BTB) #1
cu _
n-bit MC
SPU BBC
fputEz = BIB #2 g’ggggsg?;g QOutput | (Bitstream
E n-bit MC UNIT) Cto Blnatry)
CLK Full | 5 onverter
[7 ***** - J
Input #m —» J‘
| BTB #m
U T nbitMe
e - Full Stop signal

Fig. 8. Proposed Architecture with Control Unit (CU) and Modified Counter
MO)

2) Structure for Error Tolerant Applications: In binary
radix representation, least significant bits (LSBs) have less
impact on the accuracy of computations than most signifi-

cant bits (MSBs). This impact further reduces when the bit-
width of data increases. The difference between two 8-bit
precision numbers A=10000000 and B=10000001 is only on
the LSB. A represents 0.5 while B represents 0.5039. The
absolute difference between these two values is only 0.0039, a
negligible difference for many applications. If the application
can tolerate such small rates of inaccuracy, it is feasible to
further reduce the processing time of deterministic bit-stream
processing for many input cases. For example, if setting the
LSB of B=10000001 to O, the input data can be precisely
represented using a stream of only 2 bits rather than a stream
of 28 bits. This will significantly reduce the number of cycles
required in the deterministic bit-stream processing at the cost
of a negligible accuracy loss. Fig. 9 shows a modified CU for
a system that processes 4-bit precision inputs and can tolerate
small rates of inaccuracy. Assume two 4-bit inputs, A=1001
and B=1001, are to be multiplied. With the proposed design,
the number of clock cycles decreases from 28 to 22 at the cost
of 0.06 error rate. This rate of error can further decrease as
the bit-width increases.

(4-bit) Constant Register

(Input) .
1001 1 0 0 0
V;
Ccu T
(Control
it) Ccs2 0
| g)—csi—+=0

Fig. 9. Modified 4-bit Control Unit for error tolerant applications

III. EVALUATION

The overhead of the proposed design is some additional
logic gates due to adding the CU and MC units. As shown in
Fig. 7, CUs include some standard OR gates. MCs also contain
some additional XNOR gates compared to the regural counters
to enumerate the maximum number which CU determines.
The overhead cost, however, is insignificant compared to the
total cost of the the system. Table I shows the overhead of the
proposed design for different input precisions in terms of the
required additional logic gates. As can be seen, for the 16-bit
precision design, the proposed context-aware design has an
overhead of 14 OR and 15 XNOR gates.

TABLE I
OVERHEAD OF PROPOSED DESIGN.

Input #of LSBs # of # of Saved Components
Precision set to 0 OR Gates XNOR Gates P
4-bit v 2 3 0
I 1 1 Flip Flop, 1 AND Gate
0 6 7 0
1 5 6 1 Flip Flop, I AND Gate
8-bit 2 4 5 2 Flip Flop, 2 AND Gate
3 3 4 3 Flip Flop, 3 AND Gate
4 2 3 4 Flip Flop, 4 AND Gate
0 14 15 0
1 13 14 1 Flip Flop, I AND Gate
2 12 13 2 Flip Flop, 2 AND Gate
16-bit 3 11 12 3 Flip Flop, 3 AND Gate
4 10 11 4 Flip Flop, 4 AND Gate
5 9 10 5 Flip Flop, 5 AND Gate
6 8 9 6 Flip Flop, 6 AND Gate

By accepting some inaccuracies in the computation, not
only the overhead but also the overall area occupancy of the
system decreases compared to the conventional architecture.
This additional saving is due to further reduction in the size of
the MCs. For clarity, we provide an example. Assume the data
bit-width is 16 and the application can tolerate up to 2 percent
error rate in the result. This allows the system to ignore up to
6 LSBs (set them to 0) for a 2-input multiplier design. The
modified design for such an error tolerant application has an
overhead of 8 OR and 9 XNOR gates and can work with a 10-
bit counter instead of a 16-bit one. For some rates of error, the
hardware savings from reducing the size of the counter will
be higher than the overhead cost of additional gates added
to the system. Therefore, the proposed design can save some
hardware cost compared to the conventional architecture.

Tables II and III report performance improvements when
using the proposed designs. For each case (i.e., a different
number of inputs and a different precision) we find the number
of processing cycles required for the conventional design and
also the percentage of the reduced number of cycles for
all possible input values for the proposed design. As can
be seen, by increasing the number of inputs (m) and the
precision of data (n) a higher reduction in the processing
time is achieved. A lower processing times also translates
into a lower energy consumption. The proposed context-aware
designs make the deterministic bit-stream processing more
appealing for applications that expect high accuracy processing
and also for error tolerant applications.

IV. CONCLUSION

In this work, we proposed a context-aware architecture
to improve the performance of the deterministic bit-stream
processing systems. The proposed design employs a control
unit to extract the minimum precision required to precisely
represent each input data. The result is a considerable im-
provement in the processing time and so energy consumption
at a reasonable hardware cost overhead.

REFERENCES

[1] A. Alaghi and J. P. Hayes. Survey of stochastic computing. ACM Trans.
Embed. Comput. Syst., 12(2s):92:1-92:19, 2013.

TABLE II
PERFORMANCE IMPROVEMENTS WITH THE PROPOSED DESIGN.

Conventional Proposed Design

of Inputs Input Precision Design Percentage of
of cycles reduced cycles
4-bit 28 54.85
2 Inputs 8-bit 216 55.55
16-bit 232 55.55
4-bit 212 69.67
3 Inputs 8-bit 224 70.36
16-bit 248 70.37
4-bit 216 79.62
4 Inputs 8-bit 232 80.24
16-bit 264 80.25
4-bit 220 86.30
5 Inputs 8-bit 240 86.82
16-bit 280 86.83
TABLE III

PERFORMANCE IMPROVEMENT WITH THE PROPOSED DESIGN FOR ERROR
TOLERANT APPLICATIONS. THE REPORTED ERROR RATE IS THE MAXIMUM
ERROR FOR THE CASE OF MULTIPLYING THE INPUTS.

Conventional _ Proposed Design .
of Inputs PrIerol:Ii):iton Design #szf tLoS]Ogs Percentage of Err?;l)hle
of cyles Reduced cycles ‘
4-bit 28 1 88.18 11
1 88.88 0.7
. 2 97.21 2
. 16
8-bit 2 3 993 5
2 Inputs 4 99.82 11
1 88.88 3.05E-03
2 95.65 9.15E-03
. . 3 98.68 2.14E-02
32
16-bit 2 4 99.64 4.58E-02
5 99.9 9.46E-02
6 99.97 0.1921654
4-bit 212 1 95.93 15
1 96.29 1
. 2 99 3
] 24
8-bit 2 3 99.84 7
3 Inputs 4 99.97 16
1 96.29 4.58E-03
2 99.095 1.37E-02
. 3 99.84 3.20E-02
. 48
16-bit 2 4 99.97 6.86E-02
5 99.9971 0.1418353
6 99.9996 0.2881052

[2] B. Gaines. Stochastic computing systems. In Advances in Information
Systems Science, pages 37-172. Springer US, 1969.

[3] D. Jenson and M. Riedel. A Deterministic Approach to Stochastic
Computation. In Proceedings of the 35th International Conference on
Computer-Aided Design, ICCAD ’16, New York, NY, USA, 2016.

[4] S. Liu and J. Han. Energy Efficient Stochastic Computing with Sobol
Sequences. In Design, Automation Test in Europe Conference Exhibition
(DATE), 2017, pages 650-653, March 2017.

[S] M. H. Najafi, S. Jamali-Zavareh, D. J. Lilja, M. D. Riedel, K. Bazargan,
and R. Harjani. An Overview of Time-Based Computing with Stochastic
Constructs. IEEE Micro, 37(6):62-71, November 2017.

[6] M. H. Najafi, S. Jamali-Zavareh, D. J. Lilja, M. D. Riedel, K. Bazargan,
and R. Harjani. Time-Encoded Values for Highly Efficient Stochastic
Circuits. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 25(5):1644-1657, May 2017.

[7] M. H. Najafi and D. Lilja. High Quality Down-Sampling for Deterministic
Approaches to Stochastic Computing. IEEE Transactions on Emerging
Topics in Computing, 2018.

[8] M. H. Najafi, D. J. Lilja, and M. Riedel. Deterministic Methods for
Stochastic Computing Using Low-discrepancy Sequences. In Proceedings
of the International Conference on Computer-Aided Design, ICCAD 18,
pages 51:1-51:8, New York, NY, USA, 2018. ACM.

[9] W. Qian, X. Li, M. Riedel, K. Bazargan, and D. Lilja. An Architecture
for Fault-Tolerant Computation with Stochastic Logic. Computers, IEEE
Trans. on, 60(1):93-105, Jan 2011.

