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ABSTRACT
Unary representation is straightforward, error tolerant and
requires simple logic while its latency is a concern. On the
other hand, positional representation (like binary) is compact
and requires less space, but it is sensitive to errors. A hy-
brid representation called unary positional encoding reduces
the latency of unary computation and length of the encoded
stream, thus achieves the compactness of positional represen-
tation while preserving the error tolerance of unary encoding.
In this paper, we discuss the prospect of unary positional en-
coding in spiking neural systems by incorporating temporal
and rate encoding.

1. INTRODUCTION
There are mainly two classes of encoding approaches in

spiking neural systems. The first class is rate encoding where
values are encoded as rates of spikes emitted from a neuron.
Assuming a bundle of neurons, each neuron represents a
separate value, thus a change in spike rate on a particular
neuron would only impact its own value.

The second class of encoding is time encoding (a.k.a. tem-
poral encoding) where the values are encoded as temporal
relationships among the spikes emitted from the neurons in
the bundle. Since the values are represented relative to each
other, any change in spiking time on a particular neuron may
impact the value of all (or some) of the other neurons in the
bundle.

Without arguing about which encoding is possibly biolog-
ically accurate, we seek to take advantage of both encod-
ing schemes while designing neuromorphic or brain-inspired
computing systems. In our wish list, we have an encoding
scheme which is compact and has low latency while it is
error-tolerant. In traditional systems, we use positional en-
coding (e.g., binary) where a digit carries a different weight
based on its position in the stream of digits. Positional en-
coding has compact representation but it is sensitive to errors
(a single flip or change in a digit may drastically impact the
overall value). On the other hand, unary encoding is used in
stochastic computing [1] systems where each digit carries the
same amount of information (i.e., position independent), thus
more resilient to errors. However, it requires too much space
and incurs high overhead. A hybrid scheme called unary
positional encoding seems a candidate to fulfill our wish list,
as it reduces the latency and length of the encoded stream,
thus achieves the compactness of positional representation
while preserving the error tolerance of unary encoding.

In the rest of the paper, we discuss the details of unary
positional encoding and its prospect in spiking neural systems
by incorporating temporal and rate encoding.

2. UNARY AND POSITIONAL ENCODING
In biological neural systems, the information possibly be

encoded differently compared to how we encode the infor-
mation in traditional and neuromorphic computing systems.
Without loss of generality, we would like to focus on repre-
sentation of information in traditional sense (e.g., decimal,
or binary values). Assuming information is represented as
a stream of digits, each digit has a weight associated w.r.t.
its position in the stream. This makes the representation as
position-dependent. In general, a value of n-digit sequence
can be calculated as:

(xn−1xn−2...x0)base =
n−1

∑
i=0

xi ×basei

where xi < base (and 0 ≤ i ≤ n−1). As an example,

(1101)2 =
3

∑
i=0

xi ×2i

= (1×20)+(0×21)+(1×22)+(1×23)

= (13)10

Although, positional representation is compact (in terms of
number of digits to be used), it is sensitive to errors and the
sensitivity is not uniformly distributed among the positions.
For example the high-order digits have higher weights, as
a result, they become more sensitive to errors. Assume the
4-bit stream given above, the bit flip on the first bit (least
significant) would have an impact in the order of 20 = 1,
where as the fourth bit would have an impact in the order
of 23 = 8. Another drawback of positional representation is
that it may require complex logic to design even for simplest
operations, such as addition and multiplication (complexity
mainly arises due to carry-overs).

An alternative approach to position-dependent representa-
tion is position-independent representation, in which a weight
is the same for all the positions (i.e., uniformly distributed).
A value can be represented as a steam of digits where the
number of digits is equal the value of itself. This representa-
tion is called unary encoding (as it has a base of one – each
digit has a weight of one). The same 4-bit stream given above
((1101)2) can be represented in unary encoding as:

(1101)2 = (13)10 = (1111111111111)u

Since each digit has the same weight, the unary encoding
tends to be more error-tolerant compared to positional en-
coding. Any erroneous flip on a digit would only yield of
error of one which limits the impact of any error occur in
the representation. Thus, unary encoding suits very well for
the computing paradigms and environments where an error
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Table 1: Number of digits needed to represent n-digit
position-dependent value in unary encoding.

Unary Example
Binary 2n (1101)2 -> (1111111111111)u︸ ︷︷ ︸

13 digits ≈ 24

Decimal 10n (9876)10 -> (1111...1111)u︸ ︷︷ ︸
9876 digits ≈ 104

Base x xn (an−1...a0)x -> (1111...1111)u︸ ︷︷ ︸
xn digits

(or noise) is not an exception but a norm (e.g., neuromorphic
computing).

Another benefit of unary encoding is the simplicity of logic
to be designed for basic operations. Consider an addition in
unary representation: it boils down to concatenation of two
unary values to be added. Similarly, multiplication boils
down to concatenating as many copies of the multiplicand
as the value of the multiplier. Although its simplicity, unary
encoding and operation on unary values suffer from high
latency and storage. It is evident that as the value to be
represented increases, more unary digits are necessary, and
an operation on unary values may incur high latency due to
the number of digits to deal with (compared to positional
representation). If we would like to generalize the storage
complexity of unary and positional representation in terms
of length of the stream (i.e., number of digits), we can derive
that with n-digit stream in basex, we can represent basex

n

unique values. On the other hand, to represent the same
number of unique values (basex

n) in unary, we need basex
n

digits. Table 1 shows the number of digits needed to represent
n-digit positional value in unary. It is clear that the number of
digits (thus the storage overhead) in unary encoding increases
exponentially.

So far, we have briefly discussed about the pros/cons of
positional and unary encoding. Now, the question is "can
we have the best of both worlds?", namely the simplicity
and error-tolerance of unary encoding, and compactness (and
performance) of positional encoding.

Hagen and Riedel [2] introduced a unary positional rep-
resentation that is a hybrid approach to achieve the best of
both worlds. In unary positional representation, each position
has a separate stream of digits (instead of a single digit in
traditional positional encoding). The value of each stream is
represented as unary, so the value of a stream is the number
of ones it contains. Since each stream has a unique weight
w.r.t. its location in the set of streams, the overall value can
be calculated as weighted sum of each stream. That is:

k−1

∑
i=0

(
n−1

∑
j=0

xi, j)×basei

= (xk−1,n−1xk−1,n−2...xk−1,0︸ ︷︷ ︸
n digits

... x0,n−1x0,n−2...x0,0︸ ︷︷ ︸
n digits︸ ︷︷ ︸

k positions

)base

where n is the base of unary positional representation, thus
the length of each stream, and k is the number of streams
(in positional representation – weighted streams). The total

number of unique values that can be represented in unary
positional encoding is nk (where n is assumed to be a power
of 2 for easy conversion from binary to unary positional repre-
sentation). As an example of unary positional representation
in base 8 (i.e., n=8), assume we have a decimal value of 355
that can be represented as (101100011)2 in binary. Then, the
number of streams (i.e., k) becomes:

k = (# of digits in base 2)/log(n)2 (n = 8)
= 9/3 = 3 (number of streams)

Once both k and n are known, we can convert (101100011)2
into unary positional representation:

(101100011)2 = (

k = 3 streams︷ ︸︸ ︷
1︸︷︷︸
22

0︸︷︷︸
21

1︸︷︷︸
20︸ ︷︷ ︸

convert to unary

1︸︷︷︸
22

0︸︷︷︸
21

0︸︷︷︸
20︸ ︷︷ ︸

convert to unary

0︸︷︷︸
22

1︸︷︷︸
21

1︸︷︷︸
20︸ ︷︷ ︸

convert to unary

)2

= 0 1111 00 1︸ ︷︷ ︸
n = 8

0 1111 00 0︸ ︷︷ ︸
n = 8

0 0000 11 1︸ ︷︷ ︸
n = 8

= (01111001 01111000 00000111)u8
Conversion from binary to the unary positional representation
is performed via filling the bits in each stream in expanding
groups, considering the original binary bits. The least sig-
nificant bit in binary is represented by only one bit (20) in
unary positional encoding, then the next least significant bit
in binary is represented by two bits (21), then the third least
significant bit in the binary is represented by four bits (22),
and so on. The most significant bit in binary is represented
by 2m−1 bits in unary positional encoding, where m is the
number of bits in each binary stream (i.e., total number of
bits in binary divided by the number of streams – k). If the
binary bit is one, then the group is filled with ones; other-
wise it is filled with zeroes as shown above. The last digit
in each stream is always set to zero. Conversion from unary
positional to decimal can be performed by splitting the digits
into streams of 8 (since base is 8), then assign weight to each
stream w.r.t. its location. Finally, by multiplying the unary
value in each stream with its weight and adding them together
would give the result in decimal.

(01111001︸ ︷︷ ︸
n = 8

01111000︸ ︷︷ ︸
n = 8

00000111︸ ︷︷ ︸
n = 8

)u8

= 5×82 + 4×81 + 3×80

= 320 + 32 + 3
= 355

As seen example above, unary positional encoding is more
compact as opposed to unary encoding, and less sensitive
to errors compared to positional encoding. A single error
on a unary positional encoding may impact the value by a
smaller amount (up to nk−1) compared to positional represen-
tation (where the impact can be up to 2(log(n)2×k)−1 – i.e., the
most significant bit flips). Overall, unary positional encoding
provides a good compromise between error-tolerance and
compactness.

Next, we would like to see how unary positional encoding
can be incorporated into temporal and rate encoding in spik-
ing neural systems where we would like to have compactness,
low latency and error-tolerance.
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3. TEMPORAL-RATE ENCODING
A naive approach to represent a value as unary in spiking

neural system would be to use rate encoding. A value can be
encoded with as many spikes as there are unary digits. Fig-
ure 1 illustrates how a value of (101100011)2 = (355)10 can
be encoded as unary by using rate encoding. Since (355)10
requires 355 digits in unary encoding, there are 355 spikes
needed. Although a single neuron would suffice to encode the
value, it takes too much time to finish the encoding. Despite
its error-tolerance (missing or having an extra spike impacts
the value by -/+ 1/r, where r is the number of unary digits to
be encoded), in many applications an excessive latency may
easily become prohibitive.

r = 355 spikes

Figure 1: A value of (101100011)2 = (355)10 encoded as
a unary in rate encoding. A neuron spikes as many times
as the value to be represented.

As discussed earlier, positional encoding is compact so
it can reduce the latency (compared to unary). Positional
encoding can be incorporated in spiking neural systems by
exploiting temporal encoding. In temporal encoding, the rela-
tive spiking times of neurons in a bundle are used as a way
to encode a value. To expose positional representation in
temporal encoding, weights can be assigned to each neuron
w.r.t. their relative spiking time. A neuron that spikes first
gets the highest weight. Figure 2 illustrates a positional rep-
resentation of value of (101100011)2 = (355)10 in temporal
encoding. Since the base for the representation is chosen
as 2 (i.e., binary), the weights are assigned to neurons as a
power of 2 (the earliest neuron gets a weight of 28 and the
last neuron gets a weight of 20). The value can be calculated
as a sum of weights assigned to neurons. If a neuron does not
spike, it does not contribute to the sum.

Despite its compactness, compared to rate encoding for
unary representation, temporal encoding has two main draw-
backs for positional values. The first one is error-tolerance.
Since the neurons do not carry the same weight, a relative
shift in spiking time would render considerable (or limited)
change in the value, depending on which neuron experiences
the error. The determination of the impact of an error on the
value is not straightforward in temporal encoding, compared
to traditional positional encoding. In traditional positional en-
coding the impact is in the order of the corresponding weight
of the erroneous digit. In temporal encoding, the weights of
all (or some) of the neurons may change depending on how
much the spiking time dislocated relative to others.

The second drawback of temporal encoding for positional
values is low bandwidth utilization. Although each neuron
may spike multiple times, only the very first spike matters to
assign the weights (rest of the spikes has no impact). Thus,
the effective utilization of total spiking capacity of a bundle
is limited. Also, the size of a bundle grows as the number of
positions increases, since more weights need to be assigned
to separate neurons. Notice that the bundle size is fixed in
rate encoding for unary representation (i.e., a single neuron

t8 = 20

t7 = 21

t6 = 22

t5 = 23

t4 = 24

t3 = 25

t2 = 26

t1 = 27

t0 = 28

time

(20 ×1)+(21 ×1)+(22 ×0)+(23 ×0)+(24 ×0)

+(25 ×1)+(26 ×1)+(27 ×0)+(28 ×1)
=(355)10

Figure 2: A value of (101100011)2 = (355)10 encoded as
positional (binary) in temporal encoding. Each neuron is
assigned a weight relative to its spiking time.

would suffice to encode any arbitrarily long stream, although
it may take longer). As bundle size increases the latency may
also increase since each neuron should spike at different time
to have unique weights.

A bigger base can be used to represent a value in temporal
encoding to reduce the number of neurons needed in the
bundle. This can help to reduce the latency and un-utilized
bandwidth. However, this would result in lower resolution
compared to binary. Certain values cannot be represented in
full accuracy (as opposed to binary), and distinct values may
have the same representation in higher base when encoded as
temporal. Figure 3 illustrates a temporal encoding of a value
of (101100011)2 in base 8. Each neuron is assigned a weight
of power of 8 based on relative spiking time.

Using temporal encoding for higher bases (e.g., base 8 in
this example) has additional challenges besides lower resolu-
tion. One is that there is no way to tell if one value is bigger or
smaller than the other one by just looking at their representa-
tions in base 8 temporal encoding, if their highest weights are
the same. For example, assume a stream of digits of (100)t8
and (111)t8 that represent two separate values in temporal
encoding in base 8 (subscript t8 indicates temporal encoding
in base 8). The decimal values of them are (100)t8 = (64)10,
and (111)t8 = (73)10.

In ordinary (not temporal) base 8 a stream of (111)8 >
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t2 = 80

t1 = 81

t0 = 82

time

(111)t8

=(82 ×1)+(81 ×1)+(80 ×1)

=64+8+1 = (73)10 (which is > 82 & < 83)

Figure 3: A value of (101100011)2 = (355)10 encoded as
positional (base 8) in temporal encoding. Each neuron is
assigned a weight relative to its spiking time. The tempo-
ral encoding in higher bases have lower resolution.

(100)8. So, we expect that for any arbitrary values a and b in
decimal where a > b, the temporal representation of them in
base 8 ((A)t8 and (B)t8, respectively) would be (A)t8 > (B)t8,
as well. However, it may not be the case. Following the
example given above, let’s look at other possible decimal
values that could be represented as (100)t8 and (111)t8 in
base 8 temporal encoding. Among many numbers, we picked
the following ones for making our case clear. In base 8 tem-
poral encoding, (137)10, (145)10 and (217)10 would all be
encoded as (111)t8, which are smaller than (256)10, (384)10
and (448)10 that would be encoded as (100)t8. So, temporal
encoding in higher bases may not be reliable to make a com-
parison unless the number of digits (thus the highest weight)
are different (the values whose highest weights are larger
than the others’ are guaranteed to be bigger). This is mainly
because the multipliers of weights cannot be expressed in
temporal encoding for higher bases (i.e., xi can be 0 or 1 in
temporal encoding, as opposed to ordinary base representa-
tion where 0 ≤ xi ≤ base−1 for a value of ∑

n−1
i=0 xi ×basei).

The famous experiment conducted by Thorpe and Im-
bert [3] suggests that the very first spike carries the most
of the information. This seems inline with our observation
for temporal coding, even for higher bases. Assuming a clas-
sification or clustering operation to be performed for a set
of stimuli, they can be classified or clustered with high accu-
racy based on their highest weight (i.e., very first spike). For
further classification or clustering after the initial clustering,
there has to be more information which could not be carried
just by the spike time. This is where spiking rate comes into
the picture. Although initial spike timing carries the most
of the information, more may be needed for better accuracy
or higher resolution which can be carried out by the rate of
spikes (think of encoded values with rates corresponds to co-
efficients of weights in unary positional representation). As
spiking rate carries less information (compared to timing), the
error (+ or -) on rate would have minimal impact on the over-
all accuracy which makes the encoding more error-tolerant.
Thus, temporal and rate encoding seem to be complementary
to achieve compactness (so lower latency) and error toler-
ance in spiking neural systems, similar to unary positional

representation in traditional systems.
This hybrid temporal-rate encoding where both spike tim-

ing and rate incorporated into the unary positional represen-
tation provides a sweet-spot among compactness, latency,
resolution and error-tolerance, and avoids the drawback of
temporal encoding in higher bases (i.e., it allows reliable
comparison of values, so better accuracy for fine-grained
classification or clustering). Figure 4 illustrates a temporal-
rate encoding (in base 8) of a value of (101100011)2 as
(00011111 00001111 00000111)tr8 (where subscript tr8 indi-
cates base 8 temporal-rate encoding). Each neuron is assigned
a weight relative to its spiking time. Then, each weight has a
coefficient associated with spiking rate of a neuron. The value
is a weighted sum of each neuron. By temporal-rate encod-
ing, a value can be represented with full accuracy in higher
bases (as opposed to temporal encoding), while preserving
compactness.

t2 = 80

t1 = 81

t0 = 82

time

(00011111 00001111 00000111)tr8

=(82 ×5) +(81 ×4) +(80 ×3)
=320+32+3 = (355)10

Figure 4: A value of (101100011)2 = (355)10 represented
in base 8 temporal-rate encoding. Each neuron is as-
signed a weight relative to its spiking time. Then, each
weight has a coefficient associated with the rate. The
value is a weighted sum of each neuron.

4. CONCLUSION AND FUTURE WORK
In this paper, we discuss the details of unary positional

encoding that reduces the latency and length of the encoded
streams (i.e., it is compact), and is error tolerant. We, then
take a look at its prospect in spiking neural systems by incor-
porating temporal and rate encoding.

As a future work, we would like to investigate on the
complexity of building logic that can operate on information
represented in temporal-rate encoding (e.g., addition and
multiplication) compared to traditional positional and unary
encoding.
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