
From Arbitrary Functions to Space-Time Implementations

Georgios Tzimpragos∗, Nestan Tsiskaridze∗, Kylie Huch∗, Advait Madhavan†‡, and Timothy Sherwood∗

∗ University of California, Santa Barbara, CA 93106
† National Institute of Standards and Technology, Gaithersburg, MD 20899

‡ University of Maryland, College Park, MD 20742

Abstract—Processing in the temporal domain brings
the promise of orders of magnitude performance improve-
ments for certain classes of applications when compared
with conventional binary implementations. However, the
lack of a general design methodology poses a significant
barrier to realizing the true potential of this new foun-
dation. To help overcome these challenges, we present an
automated (and formally verified) tool capable of checking
arbitrary functions against the properties of space-time
algebra, simplifying their expression, and automatically
generating hardware implementation in race logic.

I. INTRODUCTION

The end of Dennard’s scaling and the slowdown
of Moore’s law marks the beginning of a new “het-
erogeneous” era in computing, where new materials,
device structures, and computing architectures are being
continually introduced in efforts to deliver the antic-
ipated growth. To successfully navigate this era of
innovation though, it is necessary to (a) distinguish
between new paradigms for computation and new tech-
nological advancements and (b) understand how the one
can motivate or even unlock the true potential of the
other [5].

Along these lines, in our prior work we introduce
the idea of race logic [3], [7]. The approach lives at
the boundary of analog and digital worlds where fully
digital signals (all wires carry only a “high” or “low”
signal) are used to encode continuous rather than binary
variables. Events are represented by low to high edges
and computation emerges through the purposeful inter-
action of edges and their relative delays. Only a single
“wire” is required per variable (because the time it takes
for an event to appear on that wire is what encodes
the value) and the operators forming its foundation
are MIN, MAX, DELAY, and INHIBIT, rather than
AND, OR, and NOT. Even when off-the-shelf digital
CMOS components are used, the encoding can result
in orders of magnitude performance improvements for
certain classes of applications. There might be even
more potential improvement when novel devices are
used in this new way.

In contrast with conventional digital computing,
which relies on a binary system of ones and zeros,
processing in race logic happens in the temporal domain
and it is governed by the rules and properties of space-
time algebra [6]. As with any information representation
change, some computations become easier to perform

while others become more difficult — but we now
know it to be efficient in several important cases.
For example, A. Madhavan et al. [3] use temporal
relationships to implement Needleman and Wunsch’s
popular DNA sequence algorithm. M. H. Najafi et al. [4]
demonstrate a low-cost bitonic sorting network circuit
using temporal processing. G. Tzimpragos et al. [7]
apply race logic to accelerate ensembles of decision
trees, while J.E. Smith [6] explores the relationship
between temporal codes and spiking neural networks.
However, all of these designs have been developed in
an ad-hoc manner and tools that help us check, optimize,
and efficiently implement applications in this new logic
are still missing.

Here we explore a more systematic way of devel-
oping and checking space-time systems. We describe
a formalization of the known properties of space-time
algebra, present an automated checker capable of ver-
ifying whether an arbitrary function is implementable
in the “temporal” domain or not that works even high
dimensional cases, and then, if the given function passes
the checks, we simplify its expression and return a
synthesizable RTL design.

II. SPACE-TIME ALGEBRA PROPERTIES

Functions defined over space-time algebra take tem-
poral events as inputs, produce temporal events as
outputs, and the relationships between input and output
events must be consistent with the flow of time. Under
this formulation, any space-time function must satisfy
the properties of invariance and non-prescience [6]. A
more formal definition of these properties in discretized
time follows.

Let N∞
0 = {0,N+,∞}, where N+ is the set of

positive natural numbers 1 and ∞ represents an event
that never occurs; we assume that ∞ is always greater
than any number in N+. In the case of a bounded
domain, we assume that any number beyond the upper
bound is indistinguishable from ∞. Let n be a positive
integer and X = {x1, . . . , xn} be a set of variables
over N∞

0 . Let f be an n-ary function defined as a
mapping from Xn to N∞

0 , i.e. f : Xn −→ N∞
0 . Let

σ : X −→ N∞
0 be an assignment function over X , such

that σ(xj) = ij for xj ∈ X , ij ∈ N∞
0 , and j ∈ [1, n].

1Each element of N∞
0 represents a specific time at which an event

occurs.



Given a function f , we define by fσ an evaluation of
f after replacing all variables xj in f by σ(xj), i.e.
fσ = f(i1, . . . , in).

Invariance. Invariance captures the property of a func-
tion that, if one is to shift all of the inputs in time
by a constant amount, the output will shift by that
same amount. More formally, if c ∈ N+ and σc is an
assignment function such that σc(xj) = σ(xj)+c for all
xj ∈ X , then fσc = fσ+c; i.e. f(i1+c, . . . , in+c) =
f(i1, . . . , in) + c.

An important ramification of invariance is that, no
output event will ever occur before at least one input,
associated with it, is observed. We formalize this as
follows: ∀σ∃xj : xj ∈ X,σ(xj) ≤ fσ.

Non-prescience. The property of non-prescience de-
notes that a function cannot use any “future” informa-
tion for the determination of what output to return. To
formally define it, we first introduce the set Xf,σ =
{xj |xj ∈ X,σ(xj) > fσ} to denote a subset of all
variables in X that carry “future” information under
the current assignment. The non-prescience property is
formalized as follows2: if σ′ is an assignment function,
such that

σ′(xj) =

{
σ(xj), xj ∈ X −X(f,σ)

i′j , i′j ∈ (fσ,∞], xj ∈ X(f,σ)
,

then fσ′ = fσ.

III. CHECKING FOR SPACE-TIME VIOLATIONS

Any space-time function can be expressed with
a function table. However, not every function table
represents a valid temporal function; it may violate one
of the properties that govern the space-time algebra. To
address this issue, we develop an automated checker
capable of verifying whether an arbitrary function is
implementable in race logic or not.

Function table. Given a set of variables X =
{x1, . . . , xn} we define a function table Tf as an n-
dimensional table where each dimension represents a
variable in X and is indexed in the range of N∞

0 .
A position i1, . . . , in in the table is indexed by an
assignment σ, where σ(x1) = i1, . . . , σ(xn) = in. An
entry in the table at the position i1, . . . , in is denoted
as Tf [i1, . . . , in]. If the function f is not specified for a
particular input, the corresponding table entry is marked
as “N/A”, otherwise the entry stores the value fσ, i.e.
either Tf [i1, . . . , in] = “N/A” or Tf [i1, . . . , in] = fσ.
Intuitively, the indices of Tf are inputs and the entries
in Tf are outputs. In Panel (a) of Figure 1, we illustrate
a two-dimensional function table.

2We assume that all computations are performed instantly thus
events at time t can be used to trigger other events at time t

Function Table Checker. Given an arbitrary function
table Tf , possibly not fully specified, the checker op-
erates through a chain of verification steps to verify
whether the function table is implementable in race
logic.

Steps 1-3. The first three steps, shown in Figure 1(a-
b), are sanity checks and verify (a) that the indices
and entries in the given table are of appropriate type
and (b) that for every defined entry of Tf at least
one index (input) is observed before this entry (output)
occurs. These checks, while not strictly necessary, catch
easy errors quickly before more exhaustive checking is
employed.

Figure 1(b) also illustrates how one can use invari-
ance to relate entries diagonally across the table. If
Step 3 returns TRUE, then all entries can be shifted
to the table’s “surface”; column 0 and row 0 of the
function table will then determine fully all the re-
maining entries. Given this property of a “temporal”
function table, our checker should assure that there are
no conflicting entries — the situation where multiple
normalized entries map to the same slot, but with
different values, during the normalization phase. Step 4
completes this final check by normalizing the function
table in this way and checking whether conflicts occur:
∀i1, . . . , in : i1, . . . , in ∈ N∞

0 , c = min(i1, . . . , in),
Tf [i1 − c, . . . , in − c] ≡ Tf [i1, . . . , in]− c or Tf [i1 −
c, . . . , in − c] ≡ N/A, Tf [i1 − c, . . . , in − c] :=
Tf [i1, . . . , in]− c.

The property of non-prescience is the most inter-
esting to check and Step 5 consists of two “branches”.
More specifically, the first branch, shown in Figure 1(c),
verifies whether there is any table entry that uses “fu-
ture” information. For example, the case where x1 = 0,
x2 = 4, and Tf [x1, x2] = 5 passes the check as
Tf [x1, x2] ≥ max(x1, x2), while the case where x1 =
0, x2 = 4, and Tf [x1, x2] = 1 does not as 1 < 4.
If no such entry is found the checker returns “Pass”
and it is guaranteed that it is implementable in race
logic. Otherwise, (X(f,σ) 6= ∅) and the checker provides
the user an option to “extrapolate”. In other words,
based on the given table entries the checker is able to
infer all other entries related to any case that violates
the non-prescience property. For example, in the case
where x1 = 0, x2 = 4, and Tf [x1, x2] = 2, if the
extrapolation option is enabled, the checker will return:
∀x1, x2 : x1 ∈ [0], x2 ∈ [3] ∪ [5,∞],Tf [x1, x2] = 2.
More formally:

if (∀i1,. . ., in : i1,. . ., in∈N∞
0 ,Tf [i1, . . . , in]≡N/A or

Tf [i1, . . . , in] ≥ max(i1, . . . , in)): {return “Pass!”}
else: {∀i1, . . . , in, i′1, . . . , i′n, j :
i1, . . . , in ∈ N∞

0 , j ∈ [1, n], X(f,σ) 6= ∅,
i′j = ij when xj ∈ X −X(f,σ),
i′j ∈ (Tf [i1, . . . , in],∞] when xj ∈ X(f,σ),
Tf [i′1, . . . , i′n]≡Tf [i1, . . . , in] or Tf [i′1, . . . , i′n]≡N/A,
Tf [i′1, . . . , i′n] := Tf [i1, . . . , in]}
return “Pass!”

2



0 1 2 … ꚙ

0 𝕋𝑓[0,0] 𝕋𝑓[0,1] 𝕋𝑓[0,2] … 𝕋𝑓[0,∞]

1 𝕋𝑓[1,0] 𝕋𝑓[1,1] 𝕋𝑓[1,2] … 𝕋𝑓[1,∞]

2 𝕋𝑓[2,0] 𝕋𝑓[2,1] 𝕋𝑓[2,2] ... 𝕋𝑓[2,∞]

… … … … ... …

ꚙ 𝕋𝑓[∞, 0] 𝕋𝑓[∞, 1] 𝕋𝑓[∞, 2] … 𝕋𝑓[∞,∞]

0 1 2 … ꚙ

0 𝕋𝑓[0,0] 𝕋𝑓[0,1] 𝕋𝑓[0,2] … 𝕋𝑓[0,∞]

1 𝕋𝑓[1,0] 𝕋𝑓[0,0] + 1 𝕋𝑓[0,1] + 1 … 𝕋𝑓[0, _] + ∞

2 𝕋𝑓[2,0] 𝕋𝑓[1,0] + 1 𝕋𝑓[0,0] +2 ... 𝕋𝑓[0, _] + ∞

… … … … ... …

ꚙ 𝕋𝑓[∞, 0] 𝕋𝑓[_, 0] + ∞ 𝕋𝑓[_, 0] + ∞ … 𝕋𝑓[0,0] + ∞

(a) (b)
𝑥1

𝑋 = {𝑥1, 𝑥2} 𝜎 𝑥1 ∶= 𝑖1
𝜎 𝑥2 ∶= 𝑖2

𝑥2 𝑥1
𝑥2

1

2

∀ 𝑖𝑗: 𝑗𝜖 1, 2 , 𝑖𝑗 𝜖 𝑁0
∞

∀ 𝑖1, 𝑖2: 𝑖1, 𝑖2 𝜖 𝑁0
∞, 𝕋𝑓 𝑖1, 𝑖2 𝜖 𝑁0

∞ ∪ {𝑁/𝐴}

𝕋𝑓 𝑖1, 𝑖2 ∶= 𝑓𝜎 ∀ 𝑖1, 𝑖2: 𝑖1, 𝑖2 𝜖 𝑁0
∞, 𝕋𝑓 𝑖1, 𝑖2 ≡ 𝑁/𝐴 𝑜𝑟 ∃ 𝑖𝑗, 𝑗 𝜖 1, 2 , 𝑖𝑗 ≤ 𝕋𝑓 𝑖1, 𝑖2

∀ 𝑖1, 𝑖2: 𝑖1, 𝑖2 𝜖 𝑁0
∞, 𝑐 = min 𝑖1, 𝑖2 ,

𝕋𝑓 𝑖1 − 𝑐, 𝑖2 − 𝑐 ≡ 𝕋𝑓 𝑖1, 𝑖2 − 𝑐 𝑜𝑟 𝕋𝑓 𝑖1 − 𝑐, 𝑖2 − 𝑐 ≡ N/A,

𝕋𝑓 𝑖1 − 𝑐, 𝑖2 − 𝑐 ∶= 𝕋𝑓 𝑖1, 𝑖2 − 𝑐

(c)

0 1 … ꚙ

0 ≥ 0 ≥ 1 … ≡ ꚙ

… …

k …

k+1 𝕋𝑓 𝑚, 0

… 𝕋𝑓 𝑚, 0

m 𝕋𝑓 𝑚, 0 < 𝑚

… 𝕋𝑓 𝑚, 0

ꚙ 𝕋𝑓 𝑚, 0

𝑥1
𝑥20 1 … ꚙ

0 ≥ 0 ≥ 1 … ≡ ꚙ

… …

k ≥ 𝑘

k+1 ≥ 𝑘 + 1

… …

m ≥ 𝑚

… …

ꚙ ≡ ꚙ

𝑥1
𝑥2

𝑖𝑓(∀ 𝑖1, 𝑖2: 𝑖1 , 𝑖2 𝜖 𝑁0
∞, 𝕋𝑓 𝑖1, 𝑖2 ≡ 𝑁/𝐴 𝑜𝑟𝕋𝑓 𝑖1, 𝑖2 ≤ 𝑚𝑎𝑥 𝑖1, 𝑖2 )

𝑟𝑒𝑡𝑢𝑟𝑛 ``𝑃𝑎𝑠𝑠′′

𝑒𝑙𝑠𝑒

∀ 𝑖1, 𝑖2, 𝑖1
′ , 𝑖2

′ , 𝑗: 𝑖1 , 𝑖2 𝜖 𝑁0
∞, 𝑗 𝜖 1, 2 ,

𝑖′𝑗 = 𝑖𝑗 𝑤ℎ𝑒𝑛 𝑥𝑗 𝜖 𝑋 − 𝑋(𝑓,𝜎), 

𝑖′𝑗 𝜖 𝕋𝑓 𝑖1, 𝑖2 ,∞ 𝑤ℎ𝑒𝑛 𝑥𝑗 𝜖 𝑋(𝑓,𝜎),

𝕋𝑓 𝑖′1, 𝑖′2 ≡ 𝕋𝑓 𝑖1, 𝑖2 𝑜𝑟 𝕋𝑓 𝑖′1, 𝑖′2 ≡ N/A,

𝕋𝑓 𝑖′1, 𝑖′2 ∶= 𝕋𝑓 𝑖1, 𝑖2

(d)

3

4

5

𝑟𝑒𝑡𝑢𝑟𝑛 ``𝑃𝑎𝑠𝑠′′

𝕋𝑓 𝑚, 0 ≡ k

Fig. 1. Panel (a) Any function f can be expressed with a function table Tf . Steps 1 and 2 check the domain of table indices and entries.
Panel (b) shows how all entries across the diagonals in a ”temporal” function table are related. Steps 3 and 4 check that the invariance property
holds and that there are no conflicting entries. The property of non-prescience is checked in Step 5 and it is shown in Panel (c). If this check
fails, the tool provides the user with the option to extrapolate and infer “new” table entries using the property of non-prescience as shown in
Panel (d). To return “Pass” no conflicting entries should be identified.

As can be also seen in Figure 1(d), the checker uses
the property of non-prescience to define sets of table
entries that are indistinguishable. During the extrapola-
tion phase, “new” table entries are generated, and thus
it is required to check again for possible conflicts. If
all entries of the set X(f,σ) have been processed and no
collisions are identified, then the checker returns “Pass”
and it is guaranteed that the generated function table is
implementable in race logic.

Theorem 1: (Termination) The checker always ter-
minates for finite function tables.

Theorem 2: (Correctness) Given an input function
table Tf , if the checker returns “Pass” — Tf is im-
plementable in race logic. Otherwise, Tf is not imple-
mentable in race logic.

Proof: (sketch) By the definition of space-time
algebra if an arbitrary function f has the invariance and
non-prescience properties, it is implementable in race
logic. We show, that if the checker succeeds in all steps
1-5, Tf has these properties. Steps 1 and 2 verify that
Tf is a syntactically correct function table. Steps 3 and 4
fail if and only if the invariance property does not hold.
Finally, it is easy to see, that Step 5 succeeds if and
only if there exists no table entry that uses any “future”
information. The step of “extrapolation” is not part of
the compatibility check itself, but if enabled it comes
with a mechanism for identifying conflicting entries, as
Step 4 does too, which guarantees the implementability
of Tf in race logic.

It should be noted that the properties of invariance
and non-prescience are complementary. The order we
perform the related checks can significantly affect the
execution time of the extrapolation step as its com-
plexity grows exponentially with the number of input
variables; using the invariance property first leads to
significant performance improvements as rather than the
whole table the checker can process only its “surface”
entries without any information loss.

IV. FROM FUNCTION TABLE TO HARDWARE

While the checks above ensure we have function
theoretically implementable as race logic, it does not
find a good implementation.

In his recent paper [6], J. E. Smith presents a
“general” way of implementing space-time functions
from their respective function table; each entry of the
function table corresponds to a minterm and the outputs
of all minterms are combined by a MIN function. Our
tool extends this idea and provides an automated way to
generate efficient race logic designs. More specifically,
once the checker returns “Pass” and the function table
is normalized, the tool generates a list including all
minterms and then collapses it returning a reduced set.
This set is then processed by our hardware generator
that returns synthesizable RTL code [2]. To deliver
more efficient designs, the hardware generator pushes
all delays to inputs in order to increase the reusability
of the “costly” clocked components.

3



0 1 2 … ꚙ

0

1 3 2

2 4

3

4 1 2

…

ꚙ

𝑥1
𝑥2 0 1 2 … ꚙ

0 1

1 3 2

2 4

3 1

4 1 2

…

ꚙ

𝑥1
𝑥2

0 1 2 … ꚙ

0 1

1 𝟑 ∞ ∞ ∞ ∞

2 1 4 ∞ ∞ ∞

3 1 ∞ ∞ ∞ ∞

4 1 3 ∞ ∞ ∞

… 1 ∞ ∞ ∞ ∞

ꚙ 1 ∞ ∞ ∞ ∞

𝑥2𝑥1

(a) (b)

(c) (d)

𝑥2

𝑥1

𝑐𝑙𝑘

s

≡

≡ min
f

𝑐𝑙𝑘

N/A N/A N/A N/A N/A

N/A N/A N/A

N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A

N/A N/A N/A N/A N/A

N/A N/A N/A

N/A N/A N/AN/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A N/A

N/A

N/A

N/A

N/A

N/A

N/A

N/A N/A

N/A N/A

N/A

N/A

N/A

N/A

N/A N/AN/AN/A

𝑥2 ≡ 𝑥1 + 1

𝑥2 + 3 ≡ 𝑥1 +2

𝑥2 + 1 < 𝑥1

Fig. 2. Panels (a)-(c) show the checks and transformation that our
tool performs to an example function table. Panel (d) illustrates its race
logic implementation after simplification. To increase the reusability
of the “costly” clocked components all delays are pushed to the inputs.

For better understanding, Figure 2 provides a com-
plete step-by-step overview of our tool for a valid
example case. More specifically, Panel (a) illustrates a
syntactically correct function table. Panels (b) and (c)
show how the invariance and non-prescience properties
are used to normalize it and extrapolate, respectively.
Our checker verifies at east step that no conflicts be-
tween various entries exist, creates a full list of the
function’s minterms and then collapses it for a more
compact and concise representation. Finally, its race
logic implementation with off-the-shelf CMOS compo-
nents is given in Panel (d).

V. FUTURE DIRECTIONS

Race logic uses a temporal number representations,
with only a single “wire” and at most one bit-flip
required per variable, to achieve highly efficient im-
plementations for certain classes of applications. We
present first steps towards a more robust set of tools
for design under this new encoding including both an
automated checker and logic synthesizer capable of
transforming arbitrary function tables into normalized
temporal tables (if possible), simplifying their expres-
sions, and generating synthesizable RTL.

Looking forward there are many more advances
needed and opportunities for many to contribute:

1) Even our formalization is a simplification of a more
natural computational temporal logic that is defined
over reals (continuous time) instead of natural numbers
(discrete time), i.e. over R∞

0 = {0,R+,∞}, where R+

is the set of positive real numbers. It is unclear how the
expressive power changes with the assumptions made.

2) Our checker could be extended to handle unbounded
parametric function tables, where table indices and

entries are specified mathematically. Even MIN and
MAX require infinite sized function table to enumerate
and yet can clearly be captured with a single gate. Direct
symbolic checking may be a way past this problem.

3) The checking algorithm as it stands now scales poorly
with the size of the table (which itself grows exponen-
tially with the number of inputs) and its optimization is
even less well understood. Perhaps something akin to a
BDD or AIG exists for this logic system that represents
a good trade-off between computational complexity and
expressiveness.

4) None of these designs exist in vacuum. Thus, the cost
of translating between domains (analog, binary, race,
bit-serial, one-hot, etc.) must be firmly established and
considered in our design process.

Finally, looking beyond tool support, we see new
opportunities to apply these concepts to try and fully
exploit the computational nature of new materials and
devices. As pointed out by Ceze, Hill, and Wenish [1],
we need to (1) develop more efficient encodings to make
better use of current devices and technology and (2) use
new materials that can provide more efficient switching,
denser arrangements, and unique computing models.
Under temporal logic, computation happens through the
interaction of events in time. As new devices offer
completely new interactions, we need new tools to help
us understand how their computation potential can be
fully realized.

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science
Foundation under Grants No. 1763699, 1740352, 1563935, and a gift
from Cisco Systems.

REFERENCES

[1] L. Ceze, M. D. Hill, and T. F. Wenisch. Arch2030: A vision of
computer architecture research over the next 15 years. CoRR,
2016.

[2] J. Clow, G. Tzimpragos, D. Dangwal, S. Guo, J. McMahan, and
T. Sherwood. A pythonic approach for rapid hardware prototyp-
ing and instrumentation. In 27th International Conference on
Field Programmable Logic and Applications (FPL), 2017.

[3] A. Madhavan, T. Sherwood, and D. Strukov. Race logic: A
hardware acceleration for dynamic programming algorithms.
In Proceeding of the 41st Annual International Symposium on
Computer Architecuture, ISCA, 2014.

[4] M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan. Low-
cost sorting network circuits using unary processing. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
2018.

[5] J. M. Shalf and R. Leland. Computing beyond moore’s law.
Computer, 2015.

[6] J. E. Smith. Space-time algebra: A model for neocortical
computation. In Proceedings of the 45th Annual International
Symposium on Computer Architecture, ISCA, 2018.

[7] G. Tzimpragos, A. Madhavan, D. Vasudevan, D. Strukov, and
T. Sherwood. Boosted race trees for low energy classification.
In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS, 2019.

4


