
Delay Table Representation and Function Minimization in
Space-Time Algebra

Ido Guy

School of Electrical Engineering

Tel Aviv, Israel

idoguy@mail.tau.ac.il

Shlomo Weiss

School of Electrical Engineering

Tel Aviv, Israel

weiss@eng.tau.ac.il

ABSTRACT
Although developed for modeling spiking neurons, space-time alge-
bra (s-t), provides a general way of modeling temporal computation

that extends beyond neurons. To date, neuron modeling as well

as other function implementations have been primarily ad hoc in

nature. This paper considers the problem of optimizing general

s-t functions. Starting with function specifications in the form of

"delay tables" and "delay terms", we develop and demonstrate an

optimization algorithm for two-layer s-t networks, analogous to

the Quine-McCluskey optimization algorithm for Boolean algebra.

When applied to a simple spiking neuron model, the algorithm

leads to a reduction of 21% of the components in a minterm-based

design for the same model, and is on-par with existing designs for

neurons in s-t algebra. The optimization algorithm is intended to be

the cornerstone of optimized hardware design under the space-time

algebra paradigm.

CCS CONCEPTS
• Computing methodologies→Machine learning; Learning
paradigms;

KEYWORDS
Artificial neural networks, Space-Time paradigm, Temporal spikes

model, delay terms, delay table, function minimization

ACM Reference format:
Ido Guy and Shlomo Weiss. 2019. Delay Table Representation and Function

Minimization in Space-Time Algebra. In Proceedings of the 46 International
Symposium on Computer Architecture, Phoenix, Arizona, June 2019 (ISCA
2019), 9 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
A recently developed theoretical framework for a temporal spiking

computing model is the Space-Time (s-t) algebra [6, 8]. The Space-
Time paradigm is intended for designing systems that use time as

the resource of computation. While the original motivation behind

such a paradigm is to provide the functionality of neurons, it is

useful for other applications as well.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ISCA 2019, June 2019, Phoenix, Arizona
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.

https://doi.org/10.1145/nnnnnnn.nnnnnnn

In [6, 8] it is shown that the primitive operations min, less-than
(lt) & delay are functionally complete for functions that can be spec-

fied with a bounded function table. This is referred to as bounded
functional completeness. These primitives are strongly conjectured

to be functionally complete for all s-t functions. Along with themax
primitive (which can be created using only min & less-than), one

can begin with any function table defining a space-time function

and transform it into a "Delay Table" consisting of a "delay term"

for every row of the funtion table, as illustrated in Figure 1.

Figure 1: Top: a normalized function table having three in-
puts (xi ) and one output (y). Bottom: canonical form show-
ing delay terms for the three highlighted table rows. If in-
put (0, 0, 1), corresponding to the middle highlighted term,
is applied, then the resulting network values are shown in
the figure near the outputs of the gates. Increments (which
model delays) are shown as boxes enclosing a delay amount.
The dashed lines in the input of the second-level min gate
are meant to signify that there are other inputs to the min
gate that were not drawn in the figure.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


ISCA 2019, June 2019, Phoenix, Arizona Ido Guy and Shlomo Weiss

A delay term is composed of delay units, min and max operators
and a less-than operator. It has an excitatory part (where the input

vector is fed into the max operator through a set of delays) and an

inhibitory part (where the input vector is fed into the min operator

through a set of delays and an additional 1-unit delay). The output

of the excitatory part is possibly blocked by the output of the

inhibitory part by use of the lt operator. See Figure 2.

Figure 2: An example delay term. The upper half (max) is
excitatory; the lower half (min) is inhibitory.

A delay term corresponding to a single function table row has

the same delay values in the excitatory and inhibitory parts (ex-

cluding the additional 1-unit delay of the inhibitory part). As we

will see later on, using larger delay values in the inhibitory part

will implement more than one function table row.

An optimized design in s-t algebra should contain the minimum

number of delay terms, where the min among them is taken as

the output of the function. This is analogous to a two-level binary

network formed as a product of sums in Boolean algebra. A worthy

endeavor, in that case, would be to develop an algorithm for finding

such an optimized network, equivalent to algorithms such as Quine-

McCluskey [2] in Boolean algebra.

The Quine-McCluskey algorithm is performed by combining

different minterms into implicants, and then further combining

those implicants, until only the prime implicants are discovered. In

this work, we will explore and then formalize the ways in which

delay terms can be combined in s-t algebra.

1.1 Contributions
(1) Thus far, no considerations of optimization or budget con-

straints were taken in previous work made in the realm of

space-time algebra, except for designs of specific networks

such as a sorting network and a single neuron model. This

work introduces the concept of general optimization into

the s-t paradigm, in the same way that Karnaugh maps and

the Quine-McCluskey algorithms contribute to the basic

building blocks of Boolean algebra.

(2) We introduce Delay Tables. Delay tables are a new way to

describe s-t functions, one which allows to see the relations

between different rows of a function table, as well as describe

more complex functions.

(3) We describe and formalize delay term behavior in space-time

algebra. Although the structure of delay terms was already

found in previous work, no formal definition of how delay

terms behave and how they relate to rows in function tables

was made in previous work.

(4) We articulate a minimization algorithm similar to Quine-

McCluskey, with examples that show how it is used and how

many resources can be saved by applying the algorithm.

1.2 Overview
In Section 1 we describe characteristics of the Space-Time algebra

and provide motivation for this work. In Section 2 we summa-

rize work that is related in some aspects of the present research.

Section 3 provides additional details on the Space-Time algebra.

Section 4 describes delay term behavior, which is formalized in

Section 5. In section 6 we introduce Delay Tables, a new way to

describe s-t functions. In Section 7 we articulate a minimization

algorithm similar to the Quine-McCluskey algorithm in Boolean al-

gebra. This is followed in Section 8 by the description of minimizing

a neuron model. Finally we summarize this work in Section 9.

2 RELATEDWORK
The space-time paradigm is a theoretical foundation [6, 8] for Time-

based Neural Networks (TNNs). In TNNs information is encoded

in the timing of voltage spikes that show up on separate intercon-

nection lines, relative to the time of the first spike. There is at most

one spike on a line. As opposed to TNNs, in Rate-based Neural

Networks (RNNs) information is encoded in the rate of spikes oc-

curring on a specific interconnection line. TNN is the model that is

most relevant to the present research.

The space-time paradigm is a subtype of unary computing - all

computation and communication in the paradigm is based on unary

codes. This theoretical framework can be physically implemented

using standard CMOS components used for binary computers by

applying the principles of "Race Logic" [1]. Work by Najafi et al. [3]

shows that unary computation paradigms can have an advantage

for certain computation tasks (in this case, sorting applied tomedian

filtering).

This paper is based on the work described in [6, 8] on the space-

time model. We elaborate on a specific aspect of space-time func-

tions, namely delay terms, delay tables and minimization. We de-

velop algorithms that have a similar role in s-t algebra as the Quine-

McCluskey algorithms in Boolean algebra.

3 BACKGROUND
Space-time algebra is a mathematical framework that provides a

theoretical foundation for Temporal Neural Networks (TNNs), but

can also be used for other, more general applications. Here we only

provide a brief description necessary for the remainder of this paper.

For more details the reader is referred to [8].

In space-time networks information is encoded as the precise

timing of voltage spikes. An example is shown in Figure 3. At the

top row time is shown in time units. A ‘1’ on line xi at a specific
time indicates that a spike was produced at that time. The default

value is ∞ for a timeline on which there is no spike. The intuitive

meaning of ∞ is that one has to wait a very long (infinite) time

until a spike arrives on that line.

Space-Time functions were formally defined in [9] and again in

[7]. The definition from the latter is quoted here:

Define the setN∞
0

to consist of 0, the natural numbers,

and the special element∞, whichmodels the situation



Delay Table Representation and Function Minimization in Space-Time Algebra ISCA 2019, June 2019, Phoenix, Arizona

time 0 1 2 3 4 5 6 7 ... ... ∞

x1 1

x2 1

x3 1

x4
x5 1

Figure 3: Space-time encoding of the sequence < 0 5 2∞ 6 >.

where there is no spike on a given communication

line. The symbol “∞” has defined properties typically

associated with infinity. That is:∞+n = ∞ and∞ > n
for all n ∈ N∞

0
.

Definition: A function z = F (x1...xq ),x1...xq , z ∈

N∞
0

is a Space-Time Function if it satisfies the following
properties:

1) computability: F implements a computable total

function.

2) causality: For allx j > z, F (x1...,x j , ...xq ) = F (x1...,∞, ...xq )
and if z , ∞, then z ≥ xmin .

3) invariance: F (x1 + 1, ...,xq + 1) = F (x1, ..xq ) + 1.

The s-t algebra defines three basic functions [8]. Refer to Figure 4.

The increment function produces an output spike one time unit later

than its input. The min function (∧) produces an output spike as

soon as the first spike arrives at its inputs. The less-than (lt) function
(≺) produces an output spike at the same time as the input spike if

the input spike arrives before the control spike.

These three functions make up a functionally complete set for

bounded function tables, but it is worth noting that themax function
(∨), which produces a spike only after the last spike arrives at its

inputs, is convenient but not essential for completeness.

Functions in s-t algebra can be described by function tables, very

similar to truth tables in Boolean algebra (see example in top of Fig

1). There is a single column for every input to the function, and the

rightmost column is the output value of the function. The symbol

“∞” is mostly written as “-” in such tables.

These function tables are normalized and bounded. “Normalized”

means that at every row in the table, at least one input has a value

of zero. This is due to the “invariance” property of s-t algebra

functions - if one would like to determine the output value of an

unnormalized input, one can first normalize the input, find the row

corresponding to the normalized input in the function table, and

then add the normalizing constant back to the output value in the

function table. “Bounded” means that the table does not contain

the entire unbounded set N∞
0
, but only values up to a certain finite

value. It is assumed that if a possible input does not appear in the

function table, then the output value corresponding to that input is

∞.

However, function tables have some significant shortcomings.

Function tables can be used to show bounded functional complete-

ness, i.e., any function described by a function table can be im-

plemented using min, max, lt and delay (by implementing each

row in the table as a delay term). Observe that this completeness

result holds only for functions with bounded function tables. Con-

sequently, this does not include all of the s-t functions, and excludes

Figure 4: Basic functions of space-time algebra.

some important ones. For example, the max function a ∨ b cannot

be specified by a bounded function table.

This apparent inadequacy raises the issue of whether a conven-

tional function table specifying delay terms, analogous to a truth

table, is the best way to specify s-t functions. To potentially resolve

this issue a more complete tabular way of specifying functions is

given in section 6.

4 DELAY TERM BEHAVIOR
In this section, we explore some sample delay terms and check their

relation to an example single-row delay term. We will deduce from

this exploration the general behavior of delay terms, and which

function table rows they cover.

4.1 Combining Two Single-row Delay Terms
Let us start with an example of a simple single-row delay term, one

where f(2,1,0) = 3 (Figure 5).

Figure 5: The delay term f(2,1,0) = 3.

It was shown [9] that a delay term where d Ii < dEi , for any i, will
have an output value of∞ for every possible set of inputs, so it will

therefore be fruitless to try and reduce the d Ii values or increase

the dEi values. We will examine a case where d I
1
is increased by 1,

i.e., a delay term such as described in Figure 6.

Figure 6: A delay termwhere d I
1
is increased by one from the

delay term f(2,1,0)=3.



ISCA 2019, June 2019, Phoenix, Arizona Ido Guy and Shlomo Weiss

In such a case, if we use an input of (2, 1, 0), we will get an

output of 3, just like in the original delay term. So, increasing d I
1

did not change the behavior of the design for this specific input.

But, unlike the original design, there is one more input that will

return an output value different than ∞; i.e. (1, 1, 0). In that case,

the output value will be 3 as well. By increasing d I
1
from 1 to 2,

we have created a delay term which is a combination of the delay

terms f (2, 1, 0) = 3 and f (1, 1, 0) = 3.

This nice property can be reached by increasing any one value of

d Ii by one, but special care needs to be taken in cases where doing

so increases the maximum value of d Ii . In our specific example, this

will happen if we increase d I
3
from 3 to 4, as illustrated in Figure 7.

Figure 7: A delay termwhere d I
3
is increased by one from the

delay term f(2,1,0)=3.

In this case, as before, the input (2, 1, 0) will provide an output

value of 3, and the additional input that will not output a value of

∞ will be (3, 2, 0), but unlike the previous example, it will output

a value of 4. So, increasing the maximum value of the delays in

the inhibition section will make the resulting delay term have the

ability to output values higher than the output of the original delay

term.

4.2 Combining General Delay Terms
We take the delay term from Fig. 6, and increase the value of d I

1

by an additional 1, as illustrated in Fig. 8. We will get a delay term

Figure 8: Delay term created by increasing thed I
1
of the delay

term f(2,1,0)=3 by 2.

that outputs a value of 3 for the inputs (2, 1, 0), (1, 1, 0) and (0, 1,

0), and a value of ∞ for every other input. So, it appears that the

number of inputs that do not output a value of ∞ is d I
1
− dE

1
+ 1.

But, this is only for the case where a single input gets its inhibitory

delay increased. The picture becomes clearer once we examine a

case like in Fig. 9.

In this case, there will be a total of 6 inputs that will provide an

output different than ∞. More generally, the number of inputs will

be (d I
1
− dE

1
+ 1)(d I

3
− dE

3
+ 1).

It is important to note that this multiplication does not occur as

expected when d Ii > dEi for every i in the same delay term. This

case is explored in Fig. 10.

Figure 9: Delay term created by increasing thed I
1
of the delay

term f(2,1,0)=3 by 2 and the d I
3
by 1.

Figure 10: A delay term where all d Ii values are increased by
one from the delay term f(2,1,0)=3.

This delay term has a total of 7 inputs that will provide an output

different than∞, rather than the expected 8 that would result from

themultiplication (d I
1
−dE

1
+1)(d I

2
−dE

2
+1)(d I

3
−dE

3
+1). It would seem

that the “missing” input that we would have expected is identical

to the input corresponding to the original delay term, but with

an output value 1 higher than the original, i.e. f(2,1,0)=4 (which

matches the delay term with delay values dE
1
= 2,dE

2
= 3,dE

3
= 4 -

all of which higher by one than the original dEi values).

It would seem that the restriction is that combined delay terms

cannot combine cases where the same inputs result in different

outputs, which should not be regarded as an actual restriction since

a valid function cannot result in more than one output for the same

input.

5 FORMALIZATION OF DELAY TERM
BEHAVIOR

In this section we formalize the guiding rules of delay term behavior

based on the observations from the previous section. We present

an algorithm to predict which function table rows are covered by a

delay term.

5.1 Deduced rules of delay term behavior
If we generalize the behavior observed by the previous examples,

we can come to a few rules regarding delay term behavior in s-t

algebra:

a. The number of function table rows that a delay term implements

is given by (1):

N =
n∏
i=1

(d Ii − dEi + 1) −
n∏
i=1

(d Ii − dEi ) (1)

Where N is the number of rows and n is the number of inputs.

b. A delay term (normalized) output value can only be in the fol-

lowing range, or infinity:

max

i
dEi ≤ out ≤ max

i
d Ii (2)



Delay Table Representation and Function Minimization in Space-Time Algebra ISCA 2019, June 2019, Phoenix, Arizona

c. The rows covered by a delay term with 3 inputs can be found

with algorithm 1, which prints all of the rows and their output

value (assuming that dEi < d Ii , of course). A similar algorithm

Algorithm 1 Function table rows covered by a delay term with 3

inputs.

1: for i = dE
1
; i <= d I

1
; i + + do

2: for (j = dE
2
; j <= d I

2
; j + +) do

3: for (k = dE
3
;k <= d I

3
;k + +) do

4: if i > dE
1
&&j > dE

2
&&k > dE

3
then

5: continue

6: m =max(i, j,k)
7: print((m − i,m − j,m − k),m)

can be written for any number of inputs.

5.2 Rules
Note that if rules a and b follow from rule c, since they can be

deduced from the algorithm in rule c.
Rule a simply says that the number of function table rows that

a delay term implements is equal to the total number of iterations,

i.e. the total number of “print” commands in the algorithm on rule

c.
Rule b is also observed from the algorithm - the minimal output

value is the maximum value among all minimum values of all of the

iterators (max(i, j, k) when i, j, k are minimal, i.e. when they’re all

equal to dEi ), and the maximal output value is the maximum value

among all maximum values of all of the iterators (max(i, j, k) when

i, j, k are maximal, i.e. when they’re all equal to d Ii ).

6 DELAY TABLE REPRESENTATION OF
FUNCTIONS

As discussed before, representing s-t function using function tables

has significant drawbacks. An additional drawback that emerges

from the discussion of delay terms is that two function table rows

that can be combined into a single delay term might look very

different, making it difficult to accurately represent delay terms

using the function table form.

In order to specify delay terms, define a Delay Table (DT) where

the table rows define algebraic delay terms in the following manner.

Each input variable, xi , has two associated delay variables, dEi
and d Ii , which can be assigned any member of N∞

0
. An example DT

is given in Figure 11. Observe there is no specified output column

in the DT; the output for a given set of inputs in not explicitly

specified.

Each row in the DT defines a delay term of the specified function.

For a given row, the associated delay term is:∨n
i=1(xi + d

E
i ) ≺

∧n
j=1(xi + d

I
i + 1)

The symbol “-” means that the input is not connected to the

delay term at all.

Special care needs to be taken for∞ delay. While it conceptually

has the meaning of "infinity" (i.e., infinite delay, or open circuit),

when added with other delays, it behaves algebraically as -1 when

added to other delay units. For example: since the inhibitory part

includes (xi + d
I
i + 1), if d Ii = ∞, we would get (xi + d

I
i + 1) =

Figure 11: Example Delay Table (DT).

(xi − 1+ 1) = xi , which would mean that any value of xi other than
∞ would inhibit the delay term.

In the above example, the delay term implemented in the first row

is (x1+0)∨(x2+1) ≺ (x1+2+1)∧(x2−1+1). The second row delay

term: (x1+1)∨(x2+0)∨(x3+2) ≺ (x1+3+1)∧(x2+0+1)∧(x3+4+1);
the third row delay term: (x1 + 1) ∨ (x2 + 0) ∨ (x3 + 0) ≺ (x1 + 2 +
1) ∧ (x2 − 1 + 1) ∧ (x3 − 1 + 1).

A function specified as rows in a function table can be re-cast

into DT form. The transformation is straightforward and proceeds

as follows. For a function table row containing entries for inputs

xi and output y, the DT entries are defined as: if xi , ∞ then

dEi = d
I
i = y − xi else if xi = ∞ then dEi = d

I
i = ∞. For example, if

we have a row in a function table (2,0,1) with an output value of

3, then the corresponding delay table row would have dE
1
= d I

1
=

3 − 2 = 1,dE
2
= d I

2
= 3 − 0 = 3,dE

3
= d I

3
= 3 − 1 = 2.

The strange behavior of ∞ delay can be intuitively explained by

thinking about the causality property of s-t algebra when perform-

ing the transformation from function table to delay table: according

to causality, if the input xi is larger than the output y, then the out-

put is the same as xi = ∞. The other side of the coin is, that it’s also

the same as xi = y + 1. If we calculate d
I
i = y − xi = y − (y + 1), we

get d Ii = −1. This notation will also be useful for the minimization

algorithm specified in the following sections.

6.1 Minimization Theorem
Theorem 6.1. Let f1 and f2 be two function table rows such that

f1(x1,x2) = ((x1 + d1 ∨ x2 + d2) ≺ (x1 + d1 + 1 ∧ x2 + d2 + 1)) and
f2(x1,x2) = ((x1 + d1 ∨ x2 + d2 + 1) ≺ (x1 + d1 + 1 ∧ x2 + d2 + 2)).
The following identity holds for every integer value of x1,d1,x2,d2:

f1(x1,x2) ∧ f2(x1,x2) =

((x1 + d1 ∨ x2 + d2) ≺ (x1 + d1 + 1 ∧ x2 + d2 + 2))
(3)

This identity is the basis for the minimization algorithm that

will be described in the next section. To put in simple terms, this

identity means that two function table rows that have the same

delay values for each input except for one where the difference

between delays is exactly 1 can be replaced by a single delay term.

7 ARTICULATING A MINIMIZATION
ALGORITHM SIMILAR TO
QUINE-MCCLUSKEY

7.1 Explanation with an example
While input values of some function table row might not always

have an obvious connection to the input values of another row that



ISCA 2019, June 2019, Phoenix, Arizona Ido Guy and Shlomo Weiss

can be combined with it to a delay term, delay values (which are

use in the DT representation) for a certain function table row are

always a distance of 1 from delay values of adjacent rows (i.e., all

delay values are equal, except for one input where the delay values

differ by 1) - this is also supported by the minimization theorem.

For example, the rows f (2, 1, 0) = 3 and f (3, 2, 0) = 4 seem very

different when presented in this inputs and output values way, but

when calculating their “delay representation” in the DT, one can

see that they are actually very similar: (1, 2, 3) and (1, 2, 4).

Therefore, the first step of an optimization algorithm would be

to take an input function and represent it using a delay table. Once

that is done, the following suggested optimization algorithm works

very similarly to the Quine-McCluskey algorithm:

1) Write the function in delay table format, as described in section 6.

x1 x2 x3 y

0 0 0 1

0 1 1 2

1 0 1 2

0 0 1 2

0 2 2 3

1 0 0 2

0 3 3 4

0 1 2 3

==>

dE
1

dE
2

dE
3

A 1 1 1

B 2 1 1

C 1 2 1

D 2 2 1

E 3 1 1

F 1 2 2

G 4 1 1

H 3 2 1

2) Like in Q-M, order all rows (analogous to “minterms” in Boolean

algebra) in groups according to the sum of all values in the string.

If the row is used in the next step, we put a check mark next to

it.

Group Name Value Used in next step

3 A (1,1,1) ✓

4

B (2,1,1) ✓
C (1,2,1) ✓

5

D (2,2,1) ✓
E (3,1,1) ✓
F (1,2,2) ✓

6

G (4,1,1) ✓
H (3,2,1) ✓

3) The next step is to find all possible combinations of two rows

into a single delay term (like finding combinations of minterms

into implicants in Q-M for Boolean algebra). Note that a row can

only be combined with another row if they are from adjacent

groups (i.e. a row from group 4 can only be combined with a row

from group 3 or group 5, and not with any row from group 4).

Write out all possible combinations in the table of the next step

(you only need to check for each row if it can be combined with

rows from the next group). If two rows are combined, write the

delay value where they differed as the range of the two values

(for example, (1,2,3) and (1,2,4) are combined into (1,2,3..4)). The

groups in this step’s table are ordered according to the range of

sums of the rows (so, (1,2,3..4) is a combination of a row from

group 6 and a row from group 7, so in the second step’s table

the delay term will be in group 6..7).

Group Name Value Used in next step

3..4

AB (1..2,1,1) ✓
AC (1,1..2,1) ✓

4..5

BD (2,1..2,1) ✓
CD (1..2,2,1) ✓
BE (2..3,1,1) ✓
CF (1,2,1..2)

5..6

DH (2..3,2,1) ✓
EG (3..4,1,1) ✓

4) In the next step, we will combine delay terms from the second

step’s table with delay terms from the same table. Generally

speaking, if a delay term is in group x..x+i, then we will look

for matching delay terms to combine with it in group x+1..x+i+1
in the same table. A delay term can be combined with another

delay term if the delay representation of every input is identical

for both delay terms, except for one, that should be of the form

d..d+i in the first delay term and of the form d+1..d+i+1 in the

second delay term. For example, the delay term (1..2,1,1..3) can

be combined with the delay term (2..3,1,1..3) into (1..3,1,1..3).

It can also be combined with the delay term (1..2,2,1..3) into

(1..2,1..2,1..3), and with the delay term (1..2,1,2..4) into (1..2,1,1..4).

We continue these steps until no more combinations can be

made.

Group Name Value Used in next step

3..5

ABCD (1..2,1..2,1) ✓
ABE (1..3,1,1) ✓

4..6

CDH (1..3,2,1) ✓
BEG (2..4,1,1) ✓

Final step:

Group Name Value

3..6

ABCDEH (1..3,1..2,1)

ABEG (1..4,1,1)

5) Any delay term that does not have a check mark next to it is

a prime delay term. We will create a prime delay term chart to

figure out which prime delay terms are essential (like in the Q-M

algorithm). If a certain column (that represents a certain table

row in the original table) only has X in one row, the delay term

corresponding to that row is essential, and must be used.

A B C D E F G H

CF X X

ABCDEH X X X X X X

ABEG X X X X



Delay Table Representation and Function Minimization in Space-Time Algebra ISCA 2019, June 2019, Phoenix, Arizona

We can see that F, G and H are such rows, so the delay terms

CF, ABEG and ABCDEH are all essential, in this case. There

is no problem with the fact that both CF and ABCDEH cover

the row C - if the input corresponding to C will be given, they

will both create the same output value, and the min gate at the

second level of the optimal network will pick the correct value

still. It is worth noting that G, for instance, can also be covered

by EG, instead of ABEG (since A and B are covered by ABCDEH).

These delay terms use very similar primitive gates, but ABEG

would require less hardware to implement, since it has a lower

dE
1
value, while all other attributes of these two delay terms are

identical, so it would be better to use the “larger” delay term,

ABEG.

7.2 Secondary optimization and using different
primitive functions

While this work focused on implementation of delay terms using

only the primitive s-t functionsmin, lt, max & delay, there are other
primitive functions in s-t algebra, with other ways to implement

delay terms. These will not be discussed here, but it is important to

note that it is possible to use the minimization algorithm regardless

of which primitive functions are used to implement the delay terms;

Every delay term with n inputs can be described by 2n delay values

- half for the inhibitory part, and half for the excitatory part. This

is due to the fact that any delay term implementation must be

equivalent to the following s-t function:

n∨
i=1

(xi + di ) ≺
2n∧

j=n+1
(x j + dj + 1) (4)

Where xi (for i ranging from 1 to n) are the inputs and di (for i
ranging from 1 to 2n) are the delay values.

While the results of the algorithm are independent of the im-

plementation, different implementations might prove to be more

efficient than others. Therefore, after applying the minimization

algorithm, one may consider the implementation decisions as a

secondary optimization process, where the most efficient imple-

mentation is chosen for each delay term.

8 MINIMIZING A NEURON MODEL
As mentioned before, the space-time algebra paradigm is able to

simulate neurons. In [6], a design was suggested for a neuron model

using space-time algebra primitive components, as well as bitonic

sort networks. In this design, a Type A response function ([4]) of an

input signal is modeled by applying an up delay to indicate when

the response function rises and a longer down delay to indicate

when the response function falls. The signals with the up delay are

given as inputs to an up sort network and the signals with the down

delay are given as inputs to a down sort network. he amplitude of

the input signal is decided by how many times the input signal is

duplicated. We have applied the minimization algorithm to a simple

neuron model. The model has 3 inputs, x1, x2 and x3. Each of the

inputs has a rectangular response function:

• x1 has a response function that rises 1 time unit after x1,

falls 4 time units after x1, and has an amplitude of 3 during

this window.

• x2 has a response function that rises 1 time unit after x2,

falls 3 time units after x2, and has an amplitude of 2.

• x3 has a response function that rises 1 time unit after x3,

falls 2 time units after x3, and has an amplitude of 1.

Figure 12: Response functions of x1, x2, and x3 in the neuron
model, assuming that all three input spikes arrive at t=0.

The function table for this neuron model was calculated, then it was

converted to a delay representation as can be seen in Table 1. This

function table is bounded by 4 (i.e., we did not include cases where

one of the inputs has a value greater than 4), since the response

functions themselves are bounded by 4 and every behavior beyond

that would just be a replication of behavior that was already covered

by other rows (for example: if x3=0, x2=3 and x1=4, it would present

the same behavior as x3=0, x2=4 and x1=5).

One might note that there are no input values of ∞ in this func-

tion table, but there are input values that are greater than the output

values by 1 (examples: rows a, g, m). This is because input values of

∞ have the same functional meaning as any other input value that

is greater than the output value, due to s-t algebra’s causality princi-

ple. This observation allows us to calculate the delay representation

of∞ - it is −1 (negative one).

Every row received a name as one of the letters of the English

alphabet, where using case sensitivity allowed us to give all rows a

unique one-letter name. There are a total of 38 rows in this function

table.

After applying the minimization algorithm, 11 prime delay terms

were found, as described in table 2. Out of them, the first 8 delay

terms appearing in the table were chosen as essential prime delay

terms that will be used in the optimized design for the neuron

model.

The optimized implementation can be viewed in Figure 13. Note

that a ‘-1’ value for an excitatory delay means that there is no

connection of the corresponding input to the max component.

When compared to the naive single-row delay terms implementa-

tion, we see a reduction to about 21% of the required min, max and lt

gates, and less than 50% of the required delay units (a “delay unit” is

an increment by 1 time unit). When compared to the neuron design

suggested by [6], we use about 33% of the required min, max and lt

gates in the neuron design, but we require significantly more delay

units (about 3.5 times more). According to [5], min and max each



ISCA 2019, June 2019, Phoenix, Arizona Ido Guy and Shlomo Weiss

Table 1: Function table for the neuron model, and its delay
representation

x1 x2 x3 out name d1 d2 d3 group used

in next

step

0 2 0 1 a 1 -1 1 1 V

2 0 0 1 b -1 1 1 1 V

0 1 0 1 c 1 0 1 2 V

1 0 0 1 d 0 1 1 2 V

1 3 0 2 e 1 -1 2 2 V

3 0 1 2 f -1 2 1 2 V

3 1 0 2 g -1 1 2 2 V

0 0 0 1 h 1 1 1 3 V

1 2 0 2 i 1 0 2 3 V

2 0 1 2 j 0 2 1 3 V

2 1 0 2 k 0 1 2 3 V

2 4 0 3 l 1 -1 3 3 V

4 2 0 3 m -1 1 3 3 V

0 1 1 2 n 2 1 1 4 V

1 0 1 2 o 1 2 1 4 V

1 1 0 2 p 1 1 2 4 V

2 3 0 3 q 1 0 3 4 V

3 2 0 3 r 0 1 3 4 V

0 0 1 2 s 2 2 1 5 V

0 2 2 3 t 3 1 1 5 V

2 0 2 3 u 1 3 1 5 V

2 2 0 3 v 1 1 3 5 V

0 1 2 3 w 3 2 1 6 V

0 2 1 3 x 3 1 2 6 V

0 3 3 4 y 4 1 1 6 V

3 0 3 4 z 1 4 1 6 V

0 2 3 4 A 4 2 1 7 V

0 3 2 4 B 4 1 2 7 V

0 4 4 5 C 5 1 1 7 V

3 0 2 4 D 1 4 2 7 V

4 0 4 5 E 1 5 1 7 V

0 3 1 4 F 4 1 3 8 V

0 3 4 5 G 5 2 1 8 V

0 4 3 5 H 5 1 2 8 V

4 0 3 5 I 1 5 2 8 V

0 4 2 5 J 5 1 3 9 V

4 0 2 5 K 1 5 3 9 V

require a single Boolean gate to implement using CMOS, lt requires

3 Boolean gates, and each delay unit requires a flip-flop. Therefore,

while the delay term implementation of the neuron model require

much less gates than the neuron design, the two implementations

will require a very similar amount of resources. The comparison

can be seen in Table 3. “Naive Implementation” is the naive neuron

model implemented by use of only the delay terms generated from

the function table, “Optimized Implementation” is the neuron im-

plementation given by applying the optimization algorithm, and

“Neuron Model” is the neuron design suggested in [6].

Figure 13: Optimized implementation of neuron model

9 CONCLUSIONS
So far, the novel methodology named Space-Time algebrawas shown
to be functionally complete for bounded tables, and to have the po-

tential for creating more realistic artificial neural networks models

in hardware. Motivated by these findings, this work took a step

forward and characterized the behavior of delay terms in s-t algebra,

and how they relate to function table rows. By exploration of delay

term behavior, we have deduced 3 rules:



Delay Table Representation and Function Minimization in Space-Time Algebra ISCA 2019, June 2019, Phoenix, Arizona

Table 2: Prime delay term chart for the neuron model

Prime Delay Terms de1 di1 de2 di2 de3 di3

EIK 1 1 5 5 1 3

bdfhjnostwyACG -1 5 1 2 1 1

acehilpqv 1 1 -1 1 1 3

yBCFHJ 4 5 1 1 1 3

zDEI 1 1 4 5 1 2

txyBCH 3 5 1 1 1 2

achouzE 1 1 -1 5 1 1

bdghkpmrv -1 1 1 1 1 3

bdhntyC -1 5 1 1 1 1

bgm -1 -1 1 1 1 3

xBH 3 5 1 1 2 2

Table 3: Comparison of resources required by different neu-
ron implementations.

Naive

Implementation

Optimized

Implementation

Neuron

Model

min 39 9 34

max 38 8 28

lt 38 8 12

delay 186 91 26

total non-delay 115 25 74

total 301 116 100

a. The number of function table rows that a delay term implements

is given by N =
∏n

i=1(d
I
i − dEi + 1) −

∏n
i=1(d

I
i − dEi ), where N

is the number of delay terms and n is the number of inputs.

b. A delay term (normalized) output value can only be in the fol-

lowing range, or infinity: maxi d
E
i ≤ out ≤ maxi d

I
i .

c. The rows covered by a delay term with 3 inputs can be found

with algorithm 1. A similar algorithm can be written for any

number of inputs.

From the exploration of delay term behavior, we came to a re-

alization that in order to create an algorithm parallel to Quine-

McCluskey in s-t algebra, we would first need to transform function

tables into their delay representation, and then we could use the

Q-M algorithmwith slight modifications to create optimal two-level

networks. This optimization algorithm is the first step made in s-t

algebra towards practical utilization of this field, which so far has

been mostly theoretical.

This optimization algorithm was then tested on a simple neu-

ron model, showing results that could rival the current suggested

neuron implementation in s-t algebra.

ACKNOWLEDGEMENT
We would like to thank Prof James E. Smith for introducing us to

Space-Time Algebra and for his constant help and guidance in our

research. He pointed us in the right direction and shared any new

ideas he had on s-t algebra.

REFERENCES
[1] Madhavan A., T. Sherwood, and D. Strukov. 2015. Race logic: abusing hardware

race conditions to perform useful computation. IEEE Micro 35 (2015), 48–57.
[2] Zvi Kohavi and Niraj K. Jha. 2009. Switching and finite automata theory. Cam-

bridge University Press.

[3] Najafi et al. M. Hassan. 2017. Power and area efficient sorting networks using

unary processing. (2017), 125–128.

[4] Wolfgang Maass. 1997. Networks of spiking neurons: the third generation of

neural network models. Neural networks 10, 9 (1997), 1659–1671.
[5] Nasser Mehrtash, Dietmar Jung, Heik Heinrich Hellmich, Tim Schoenauer,

Vi Thanh Lu, and Heinrich Klar. 2003. Synaptic plasticity in spiking neural

networks (SP/sup 2/INN): a system approach. IEEE transactions on neural net-
works 14, 5 (2003), 980–992.

[6] James E Smith. 2017. Space-Time Computing with Temporal Neural Networks.

Synthesis Lectures on Computer Architecture 12, 2 (2017).
[7] James. E. Smith. 2018. A Discrete Computation Model for Spiking (Temporal)

Neural Networks. unpublished article (2018).
[8] J. E. Smith. 2018. Space-Time Functions: A Model for Neocortical Computation.

In Proceedings of the International Symposium on Architecture.
[9] James. E. Smith. 2018. Unary Computers. unpublished article (2018).


	Abstract
	1 INTRODUCTION
	1.1 Contributions
	1.2 Overview

	2 Related Work
	3 Background
	4 Delay Term Behavior
	4.1 Combining Two Single-row Delay Terms
	4.2 Combining General Delay Terms

	5 Formalization of Delay Term Behavior
	5.1 Deduced rules of delay term behavior
	5.2 Rules

	6 Delay Table representation of functions
	6.1 Minimization Theorem

	7 Articulating a minimization algorithm similar to Quine-McCluskey
	7.1 Explanation with an example
	7.2 Secondary optimization and using different primitive functions

	8 Minimizing a neuron model
	9 Conclusions
	References

