
A Truth-Matrix view into Unary Computing
Advait Madhavan

National Institute of
Standards and Technology
& University of Maryland
advait.madhavan@nist.gov

Georgios Tzimpragos
University of California

Santa Barbara
gtzimpragos@cs.ucsb.edu

Mark Stiles
National Institute of

Standards and Technology
mark.stiles@nist.gov

Timothy Sherwood
University of California

Santa Barbara
sherwood@cs.ucsb.edu

Abstract—Our community has been exploring Time-
of-arrival based codes as a candidate for very low energy
information processing [3], [1]. A “space-time” algebra
has been recently proposed that captures the essential
features of such a paradigm [2]. In order to gain some
insight into the behaviour of such a new representation,
we propose using temporal equivalents of conventional
Boolean truth tables. We use the basics of “space-time
algebra” as a launching point, and re-examine key ideas
such as normalization, invariance, non-prescience and
causality, as well as the behaviour of operators from the
perspective of these temporal truth matrices. We stress
on the importance of coincidence and use these tables to
provide a visual understanding of why coincidence ends
up being an essential feature of universality in this new
paradigm. We end with a simple example of how co-
incidence can be used to perform edge detection on images
and compare it with classical edge detectors.

I. INTRODUCTION

Karnaugh maps and truth tables play an essential
role in the Boolean world, providing a visual un-
derstanding of how the basic operators of Boolean
algebra work. As we make our first steps into the
temporal world, a similar notion of truth tables can
be constructed. In this paper, we describe how such
truth matrices can give us insight into the operations
of temporally coded, unary computers. But first we
describe how to interpret numeric values, in this new
“space-time” paradigm.

In our temporal world, since information in encoded
in the arrival time of events, each wire can encode
multiple logic levels. As opposed to the Boolean logic
case in which the information encoding on a wire is 2
level, taken from the [0, 1] set, space-time algebra can
be thought of as a multi-valued logic with k+2 levels,
taken from [0, 1, 2....., k,∞] set. Each element of the set

Fig. 1. General Truth matrix for a , k+2 level, 2 input space-time
function.

represents a discrete time step at which an event arrives
on that wire, where∞ means that the time at which the
wire fires is too late to affect any computation.

Since we are working with a (k + 2)-valued logic
family, for a two input function, we have (k+2)2 entries
and hence it becomes more convenient to represent it
as a truth matrix, as shown in Figure 1, as opposed to
a Boolean four entry truth table. Such a two-input truth
matrix, though simple, is enough to demonstrate some
important ideas and hence will be used as a foundation
for further exploration.

Each value in this truth matrix is indexed by the
times of arrival of its two inputs, which are taken from
the finite set [0, 1, 2....., k,∞], defined as Vk. The values
X(i,j) themselves are also drawn from Vk, but represent
times at which the output of the function triggers. Again
drawing a direct comparison with Boolean logic, in
which there are 22

2

, two input functions, the multi-
valued formulation of space-time algebra has a total of
(k+2)(k+2)2 functions. But unlike the Boolean domain
where all of the input functions can be implemented
with switches, the way information is encoded in such
a temporal domain, makes some functions impossible
to implement. It turns out that space-time functions
can only implement a subset of the total functions,
and specifically those which are constrained by the
properties of the passage of physical time.

II. TRUTH MATRICES AND SPACE TIME ALGEBRA

As far as we know, all physical systems have to obey
the layman’s notion of causation. It seems painfully
obvious to state that the output of a system is affected
by its inputs and hence happens after them. But in a
domain where the information is itself encoded in time,
this property constrains the values that the outputs of a
function can take. Two “1”s as inputs causing an output
“0” makes sense in the Boolean domain(last entry in the
XOR truth table) but in the temporal domain, it implies
acausal behaviour of the system (outputs happen before
the input). This constraining of the space of “space-
time” functions was first described in [2]. The author
decomposes this layman’s notion of causation into well
defined properties of invariance and causality. Though
we use invariance as it is, we introduce a modification
of causality defined as non-prescience and explore these
properties with truth matrices.

Fig. 2. General Truth matrix for a, k+2 level, 2 input space-time
function, constrained by invariance. Note the diagonal relationships
between the elements of the matrix.

A. Invariance:

A function is defined to be time invariant if its
behaviour is independent of “when” it is used. In other
words, if one is to shift all of the inputs in time by
a constant amount, the output will shift by that same
amount[2]. More formally, a function f : V n

k → Vk is
invariant if and only if ∀c ∈ Vk:

f(i0 + c, i1 + c, . . . , in + c) = f(i0, i1, . . . , in) + c

This definition of invariance says something about
the structure of all invariant truth matrices as shown in
figure 2. Note that column 0 and row 0 of the matrix
taken together determine fully all of the other values.
The reason for this is that, as one varies c in the above
definition of invariance, one relates entries diagonally
across the matrix. This holds for all values of c, hence
fully specifying all of the entries along that diagonal.

This results in an important property of space-time
functions – their projective nature. The value of any
element in the matrix can be determined by tracing
its projection along the diagonal back to the surface.
Note that elements on the surface have the important
property of at-least one of its input values being equal to
zero. This is the reason for the notion of normalization
is described in [2]. Hence, all normalized function
tables described in [2] lie on the surface of a higher
dimensional truth matrix. It is instructive to visualize
moving along the diagonal as following the passage
of time, while after the arrival of the first input, our
movement is constrained along the surface of the truth
matrix. Constraints along the surface are described by
non-prescience and are discussed in the next section.

The reason behind using the word “surface” is to
note that this property extends to diagonals of n dimen-
sional truth matrices, and that the n − 1 dimensional
“surface” of that matrix (e.g. for a cube it is the
three plane where x = 0, y = 0, and z = 0) fully
defines the “interior” of the truth matrix. Hence, while
there are (k+2)(k+2)2 possible 2-input functions, only
(k + 2)2k+3 of them are invariant.

Finally, an important ramification of invariance is
that no output will ever be triggered before at least one
input signal arrives. This can be noted by looking at
the bottom right element in Figure 2. Note that this

also implies that the smallest value that the output can
take has to be the min of the inputs.

B. Non-prescience:

Non-prescience captures the property that a function
cannot use “future” information to decide what output
to select. Specifically, if we are observing the operation
of a non-prescient function at time step ti, it’s output at
this time step cannot depend upon inputs that become
available at later time steps. Unlike invariance which
relates elements along the diagonal, non-prescience is
more subtle and constrains elements along the surface
of the truth matrix.

To describe this property we take snapshots of a
regular truth matrix at each time step t0, t1, t2 and t3,
and label them as C0, C1, C2 and C3 respectively. This
is shown in figure 3.

Let us analyze the structure of the first snapshot of
the truth matrix, namely C0. It has 3 colored cells and 1
white cell. The white cell represents the output whose
inputs are completely determined at the time step in
question, namely t0. The colored cells on the other hand
represent outputs for which either one of the two inputs
(represented yellow and orange cells), or both inputs
(represented by the green cells), have not arrived yet.
The key insight about non-prescience here is that, if any
element of the colored groups take the value ”0”, then
all the elements of that group have to take the value
”0”. Let us use the elements of the orange group (ai)
for discussion. The case that any of the values of ai
are ”0”, and ai depends on the column input leads to
a contradiction, since it implies that a current output
value depends on a future input, hence breaking non-
prescience. Therefore, the value could have depended
only on the row input and hence if one value is zero,
then all values have to be zero. This can be extended
without loss of generality to an arbitrary time step ti
and matrix Ci. Therefore, even though each element
in the non-prescient surface of a particular truth matrix
can take k+2 values, some values end up constraining
others in the aforementioned way. This results in non-
prescient functions having the property of ending in a
run of constants.

Hence combining notions of invariance and non-
prescience, we arrive at a similar definition to the one
proposed in [2] where functions that are both invariant
and non-prescient, are causal functions, and can be im-
plemented in the space-time paradigm. Hence, a generic
2 input ”space-time” function is shown in 4(f). Such a
function has a particular form in the truth table. It can
be seen that invariance limits the region of interest to
the surface while non-prescience ensures that the entries
end in a run of constant values.

Though such a definition may be more round-about
than the one defined in [2], it calls for explicit evalua-
tion of the function behavior at each time step. When

2

Fig. 3. Snapshots of an non-prescient truth matrices for a, k+2 level, 2 input space time function at various point in time, namely t0, t1, t2,
t3 respectively.

Fig. 4. Space time Operators and General construction: Panels (a-d) represent the MIN, MAX, INHIBIT and CO-INCIDENCE operators
respectively. Panel (e) shows the co-incidence circuit(with a δ window) constructed out of MIN, MAX and INHIBT gates, with the black
box being the delay. Panel (f) shows the truth matrix of an arbitrary space time function which obeys both invariance and non-prescience. The
equivalent circuit diagram is shown in panel (g). The regions of the circuit that correspond to the regions in the truth matrix are color coded
correspondingly.

combined with the invariance property, this allows for
enumeration of the functional space, by using series
sums and counting arguments. The analytic forms in-
volve Pochhamer series and Holonomic functions and
hence have not been included here.

C. Operators

Now that we have described the properties of
“space-time” functions, let us look at some familiar 2-
input space-time primitives.

a) Min and Max Operators:: The truth matrices
for MIN and MAX operators are shown in figure 4
(a) and (b) respectively. Notice that both functions are
symmetric and that they return the same value along the
major diagonal.

b) Inhibit Operator:: The structure of the in-
hibitory truth table is shown in figure 4(c). The INHIBIT
function[2] has two inputs: an inhibiting signal and a
data-signal (that gets inhibited). If the inhibiting signal
arrives first, the output is prevented from ever going
high, which corresponds to∞. If the data signal arrives
before or at the same time as the inhibiting signal, the
former is allowed to pass through unchanged. Hence
this asymmetric gate allows only earlier arriving or
coincident data-signals to pass.

c) Coincidence Operator:: Constructing the co-
incidence operator by combining the MIN and MAX
operators via the INHIBIT operator was first proposed
in [2]. It’s general form is redrawn in figure 4(e), with a
delay window of δ. For the truth matrix shown in figure
4(d) the value of δ is 0. Note that the co-incidence
operator specifies the diagonal elements of the truth
matrix completely, while leaving all other elements as
∞ – in reality, the coincidence operator, only fills out
the (0,0) spot while invariance takes care of the rest.
Hence by changing the delays added to any of the inputs
of the co-incidence operator, arbitrary points on the
surface of the truth matrix can be labelled, even when
scaled up to higher dimensions. The trailing constants
that emerge from non-prescience are represented by
fixed delays. This shows how the co-incidence operator
can be combined with shifted version of itself, thus
enabling construction of arbitrary space-time functions
as shown in figure 4(g).

III. CO-INCIDENCE BASED EDGE DETECTION

Edges have been known to capture the essential
features of a scene and have hence taken a central
role in a variety of computer vision algorithms. The
discrete nature of pixels and the digital nature of the
values that are encoded can lead to some non-trivial

3

Fig. 5. Comparison between edge detectors: Panel (a) shown the original image. Panels (b1) and (d1) show the classical x and y Sobel edge
detectors while panels (c1) and (e1) show the equivalent co-incidence based x and y edge detectors. Panels (b2, c2, d2, e2) show the resultant
images after respective transformations have been applied.

issues with determining the threshold of the pixel-value
discontinuities that constitutes an edge. Overestimation
of this value results in a common problem of spurious
edges. Most edge detectors include a smoothing step
that reduces this noise, without loss of information,
hence allowing false-edge suppression.

The windowed co-incidence detector which has been
described above maps well to the edge detection func-
tionality. Such an edge detector is shown in Figures
5 c1 and e1. It works by producing a value based on
the magnitudes of the specific pixels from the receptive
fields in question. If the magnitudes are close enough to
each other (meaning that they lie within a co-incidence
window represented by δ in figure 5) in the intensity
encoding, they can be thought of as being similar to
each other, and hence in the temporal context, being
co-incident with each other. Put simply if the input
pixel values arrive within δ delay of each other, they
output an edge based on the MAX function. If they
are not, it represents a discontinuity in pixel intensity
which constitutes an edge, which is represented by a
∞ value presented at the output. Note that the specific
value of δ is a parameter that can be adjusted. If a small
value of δ is causing a lot of spurious edges, it can be
increased such that only edges of interest are detected,
hence performing a kind of temporal low-pass filtering,
akin to the smoothing step in classical filters.

Figures 5(b,d) and (c,e) show a side by side com-
parison of a classical Sobel edge detector with a co-
incidence based edge detector. Though these detectors
provide similar functionality, they do so in different
ways. The Sobel edge detector kernels which are shown
in figures 5(b1 and d1), by virtue of living in a algebra
where × (multiply) and + (sum) are allowed, per-
form a kind of differentiation based gradient detection.
Specifically, figure 5(b1) shows a gradient detector
along the horizontal (x) axis. Any differential variation
in magnitude across the ”column of zeros”, which
represents an edge, results in a positive or negative
value, while similar magnitudes result in a zero value.
Hence, sharp vertical lines are detected by this filter,

as is clearly visible by observing the foliage on the
bottom left region of figure 5(b2). Similar functionality
is performed by the co-incidence circuit in figure 5(c1),
by outputting an ∞ if a gradient larger than δ is
observed. It is worth stressing that this is performed
without any summation or multiplication, and only with
MIN, MAX and delay operators. The resultant image
can be seen in figure 5(c2). Close inspection shows
that the edges in figures 5(b2 and c2) are in similar
locations. Similarly, vertical(y axis) intensity disconti-
nuities, which can be thought of as horizontal edges, are
detected by orthogonal kernels as shown in figures 5(d1
and e1). Another important distinction between the two
edge detectors, is that the co-incidence based detector,
finds edge locations and ”overlays” them on top of the
original image, whereas the Sobel detector throws away
all non edge related information.

IV. CONCLUSION

As architects, our intuitions are born in the Boolean
realm, and hence do not always map well to the tem-
poral domain. We hope that such truth-matrix based
notions make it easier to reason about the behaviors
of unary, temporally coded systems. With that aim, we
use a truth matrix approach to show how coincidence
ends up being fundamental in this domain, and give a
toy example to demonstrate its utility.

REFERENCES

[1] A. Madhavan, T. Sherwood, and D. Strukov. A 4-mm2 180-nm-
cmos 15-giga-cell-updates-per-second dna sequence alignment
engine based on asynchronous race conditions. In Custom
Integrated Circuits Conference (CICC), 2017 IEEE, pages 1–4.
IEEE, 2017.

[2] J. Smith. Space-time algebra: A model for neocortical computa-
tion. In 2018 ACM/IEEE 45th Annual International Symposium
on Computer Architecture (ISCA), pages 289–300, June 2018.

[3] G. Tzimpragos, A. Madhavan, D. Vasudevan, D. Strukov, and
T. Sherwood. Boosted race trees for low energy classification.
In Proceedings of the Twenty-Forth International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems, ASPLOS ’19, April 2019.

4

	Introduction
	Truth Matrices and space time algebra
	Invariance:
	Non-prescience:
	Operators

	Co-incidence based edge detection
	Conclusion
	References

