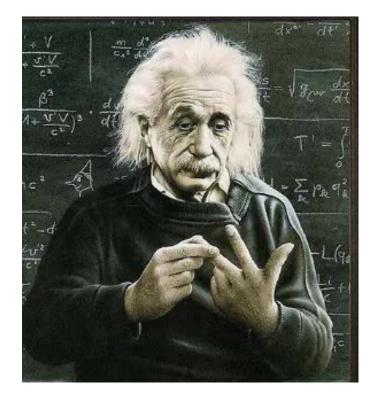
Unary Computing: The Stochastic Circuit Approach

John P. Hayes

Workshop on Unary Computing Phoenix, Arizona June 22, 2019

Unary Computing



Unary Computing

Counting to five

1 11 111 1111 11111

To twenty

1111111111 1111111111

To one thousand

Unary Computing

- Unary computing has ancient origins, and is frequently reinvented in different forms.
- A good starting point is the paper "Unary Processing" by W.J. Poppelbaum et al. in Advances in Computers, 1987
- Their definition of unary: Any representation of information in which all digits have the same weight.
- They classify unary processors into two major forms:

Deterministic

Compact representation Rapid calculation Complex circuitry Low noise immunity

Stochastic

Sparse representation Slower calculation Simple circuitry High noise immunity

Stochastic Computing

Primary characteristics:

Sparse representation Slower calculation Simple circuitry High noise immunity

Secondary characteristics:

Lower accuracy
Lower power
Massive parallelism
Biological compatibility
Complex behavior

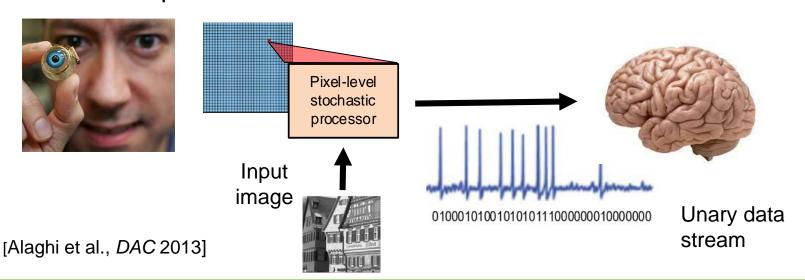
Motivating Application: Retinal Implant

Goal

Chip that can be implanted in the human eye to replace the functions of a damaged retina

Structure and function

Array of pixel processors that sense and process light images, and map them to electrical pulse streams that can be injected into the optic nerve and sent to the brain



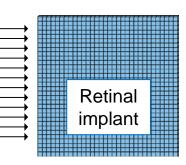
Retinal Implant (contd)

Requirements

Massive parallelism
Tiny processors
Tiny power dissipation
Biological compatibility

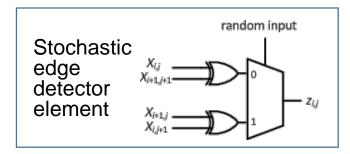
 Stochastic computing appears uniquely qualified to meet all these requirements

Retinal Implant (contd)



Edges detected by array of stochastic processing elements

Input image



Edge detector output after:

4

32

256

Clock cycles

So What is Stochastic Computing?

 In a nutshell, SC is computing with (pseudo) random bitstreams, i.e. unary sequences, that represent probabilities

Advantages

- Small size, low power, and high error tolerance
- Use (or not) of conventional logic technologies like CMOS
- Progressive precision
- Bio-compatibility
- Randomness

Disadvantages

- Low accuracy and long computing time
- Special design requirements
- Complex accuracy/time/cost trade-offs
- Randomness

Our Motivation

SC is well suited to neuromorphic and AI applications

Related Technologies

Neuromorphic computing

Spike train of neural impulses:

Stochastic number.

0100010100101010111000000010000000

Quantum computing

Analog and digital aspects:
$$|\Psi\rangle = c_0|0\rangle + c_1|1\rangle$$

Signal states (qubits) are probabilistic

$$c_k^2$$
 = probability of $\Psi = k$

Stochastic Numbers (SNs)

- An SN is a (pseudo) random bit-stream X in which each bit has a probability X of being 1.
- X's numerical value is \widehat{X} = (no. of 1s in X)/(length N of X)
- Examples of SNs:

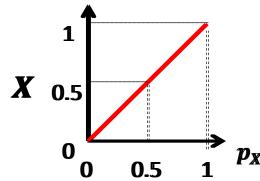
Target (exact) value	Bit-pattern	Length	Measured (estimated) value
<i>X</i> = 0.5	X = 1010	N = 4	$\hat{X} = 2/4 = 0.5$
<i>X</i> = 0.5	X = 01010110	N = 8	$\hat{X} = 4/8 = 0.5$
<i>X</i> = 0.75	X = 1101101 1101	N = 12	$\hat{X} = 8/12 = 0.75$
X = 0.75	X = 1101101	N = 8	$\hat{X} = 5/8 = 0.625$

16% inaccuracy

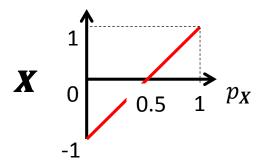
SN Formats: Unipolar and Bipolar

- If an SN X's value is interpreted as $X = p_X$, only positive numbers are represented. This is unipolar format.
- If **X**'s value is interpreted as $2p_X 1$, then positive and negative numbers can be represented. This is bipolar format.

Unipolar:
$$X = p_X$$



Unipolar:
$$X = p_X$$
 Bipolar: $X = 2p_X - 1$



Also data must be <u>scaled</u> to lie in the unit interval [0,1]

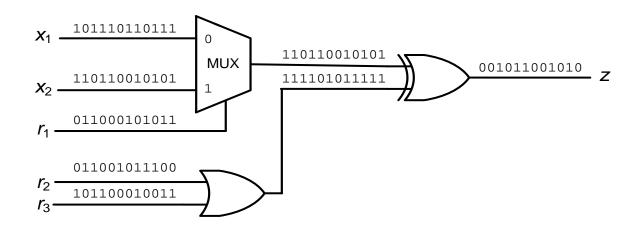
Application Areas for SC

- Analog and hybrid analog-digital tasks such as control systems and small neural networks
 - Early work from 1960s 2000s
- Several SC applications have been investigated, but only a few have been implemented in hardware
- Recent breakthroughs:
 - Decoding chips for low density parity check (LDPC) errorcorrecting codes [Naderi et al. 2011]
 - Image-processing circuits [Li & Lilja 2011], [Alaghi et al. 2013]
 - General synthesis techniques for stochastic circuits: [Qian et al. 2011], [Alaghi & Hayes 2012]
 - Applications to (hybrid) deep neural networks
 - Applications enabled by more accurate SC methods

A Little History

Dates	Topics	References
1967 - 79	Definition and basic concepts of SC	Gaines 1967
		Poppelbaum 1967
1980 -1999	Advances in the theory of SC	Jeavons et al. 1994
	Small applications of SC, e.g. to	Toral et al. 1990
	controller design	
2000 - present	Application to decoding of LDPC	Gaudet & Rapley 2003
	error-correcting codes	Qian et al. 2011
	General circuit design methods	Alaghi & Hayes 2012
	Application to image processing,	
	neural nets, etc.	(Many)
	Advances in the theory of SC	

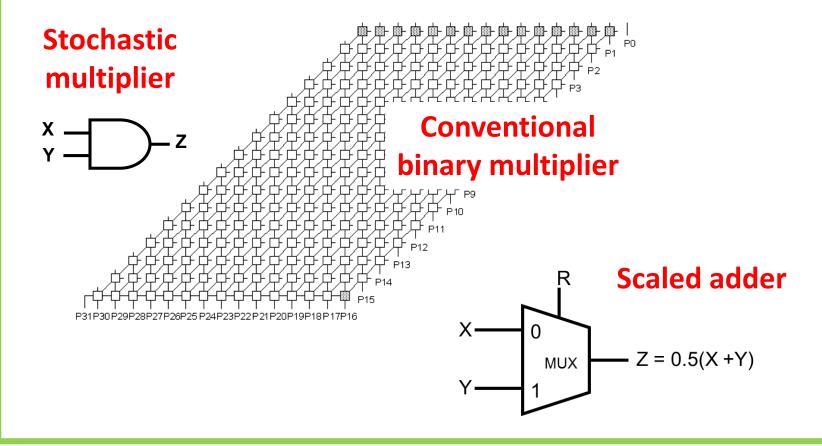
Two Faces of a Stochastic Circuit



- A logic circuit C in which a number X is encoded by a randomized bitstream X whose numerical value depends on bit probabilities
- The design target is some **arithmetic function**, in this case, $F(X_1, X_2) = -0.25 \times (X_1 + X_2)$
- F depends in a non-obvious way on C's logic function, in this case, $f(x_1, x_2, r_1, r_2, r_3) = (x_1 \land \bar{r}_1 \lor x_2 \land r_1) \oplus (r_2 \lor r_3)$ and on the input (bipolar) number values, and ancillary random constants

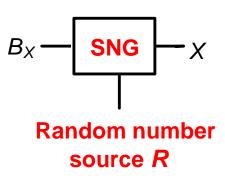
Stochastic Circuits (contd)

Key advantages: low hardware cost and power



Data Conversion Circuits

Binary to stochastic conversion:



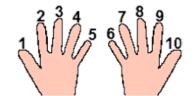
Binary number B_X SNG

Comparator Stochastic number A>B A>BRandom number R_N RNS

D

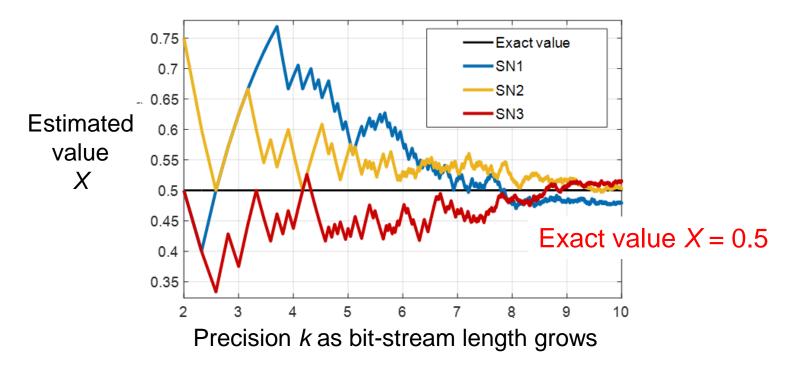
LFSR

Stochastic to binary conversion:

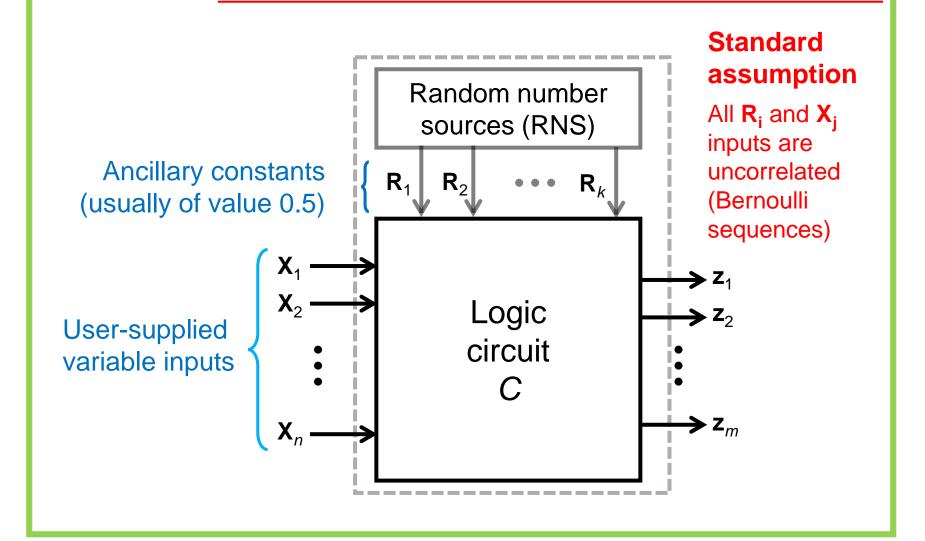


Accuracy of SNs

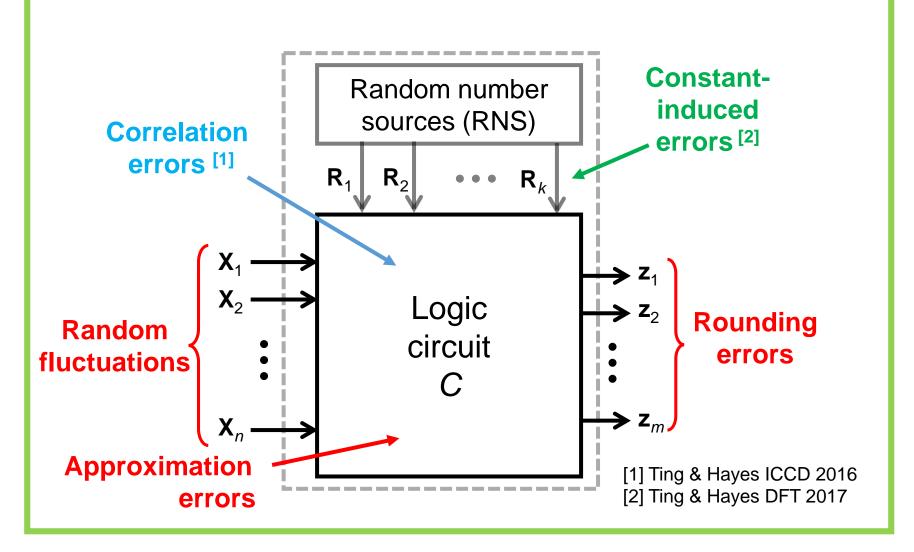
- Longer bit-streams tend to provide better value estimates
- But length grows exponentially with desired precision



Stochastic Circuit Structure

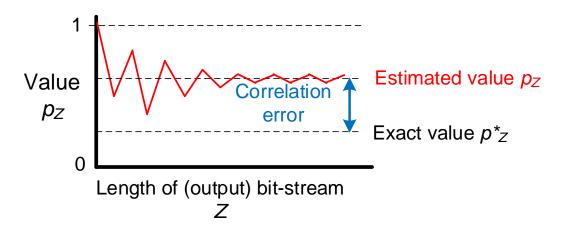


Sources of Inaccuracy



Correlation Problem

- Correlation is an inherent part of SC because interacting SNs produce results that are dependent, often in subtle ways.
- Unlike random fluctuation errors, correlation errors cannot be eliminated just by increasing bit-stream length.



Decorrelation is a solution, but it's expensive (and tricky).

Correlation is Hard to Measure

- Independent bit-streams X, Y $p_{X \wedge Y} = p_X imes p_Y$
- Standard (Pearson correlation) $\rho(X,Y) = \frac{E[(X-\mu_X)(Y-\mu_Y)]}{\sigma_X\sigma_Y}$
- SCC metric designed for use in SC [Alaghi and Hayes, ICCD'13]

$$SCC(X,Y) = \begin{cases} \frac{p_{X \wedge Y} - p_X p_Y}{\min(p_X, p_Y) - p_X p_Y} & \text{if } p_{X \wedge Y} > p_X p_Y \\ \frac{p_{X \wedge Y} - p_X p_Y}{p_X p_Y - \max(p_X + p_Y - 1, 0)} & \text{otherwise} \end{cases}$$

- SCC = +1 (-1) for maximum (minimum) overlap of 1s and 0s between the bit-streams
- Unlike ρ, SCC is unaffected by the values of the bit-streams

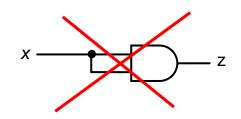
Correlation: AND Gate Multiplier

$$X_1$$
 $0 1 1 0 1 0 0 1 (4/8)$ $0 1 0 0 1 1 1 0 0 (4/8)$ $0 1 0 0 1 1 1 0 0 0 (2/8)$ Z

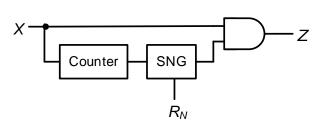
- $p(\mathbf{Z}) = p(\mathbf{X}_1) \ p(\mathbf{X}_2)$, which we write as $Z = X_1 X_2$, so an AND gate is a multiplier of SNs.
- This is accurate only if X₁ and X₂ are uncorrelated, that is, statistically independent.
- What if the AND inputs are correlated? Two viewpoints:
 - The AND becomes an inaccurate multiplier. For example, if $X_1 = X_2 = X$, then p(Z) = p(X).
 - It implements a different function accurately.

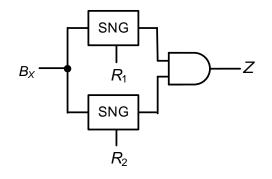
AND Gate Correlation

<u>Squaring</u>: Suppose X₁ = X₂ = X and the target function is X², i.e., squaring The function implemented is Z = X.

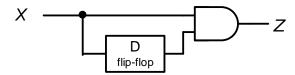


Regeneration: Costly way to compute X².





Isolation: Less costly way to compute X².

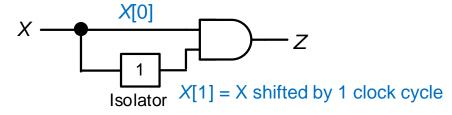


Isolation-Based Decorrelation (IBD)

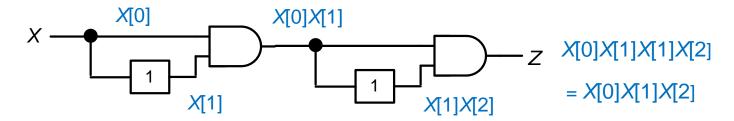
- Most stochastic circuits are designed to work accurately only with input SNs that are independent (Bernoulli) sequences X = x[0],x[1],x[2], ... where x[i] denotes the bit at time (clock cycle) i.
- IBD exploits the temporal independence among successive bits
 of X. If SN X = X[0] is delayed by i > 1 cycles, then X[0] and its
 delayed version X[i] are uncorrelated.
- <u>Problem</u>: Where do we insert isolators in a stochastic circuit to ensure sufficient decorrelation? How do we optimize their number? [Ting and Hayes, ICCD 2016]

IBD Example 1

Using IBD, we can implement a good squarer thus:

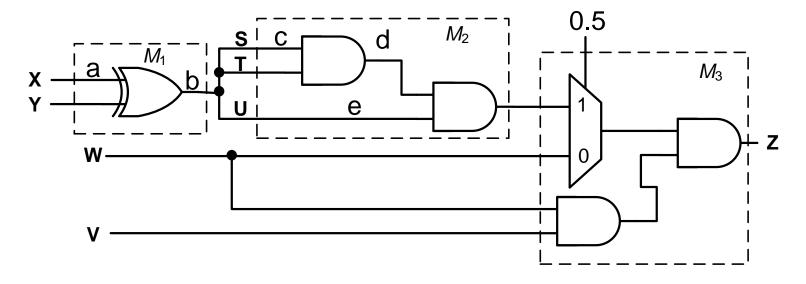


- This reduces correlation errors considerably.
- Now let's concatenate 2 decorrelated squarers to compute X^4 .



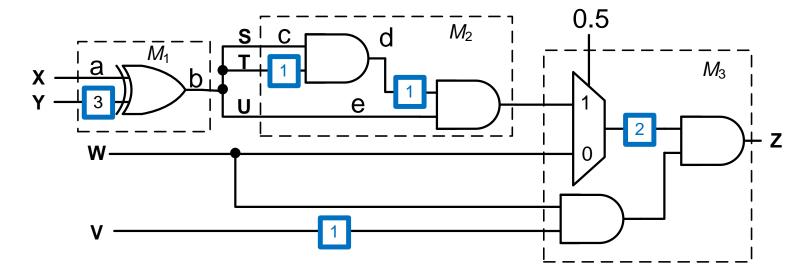
• This circuit actually computes X³ instead of X⁴!

IBD Example 2



- This is a "system" composed of three library modules M_1 , M_2 , M_3 all of whose inputs we want to decorrelate.
- It computes the polynomial $Z = 0.5WV(X + Y 2XY)^3 + 0.5W^2V$

IBD Example 2 (contd)

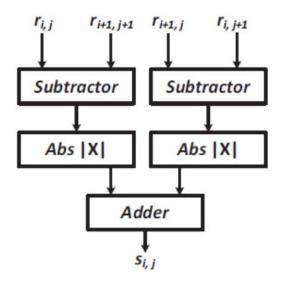


n denotes a sequence of *n* isolators (forming an *n*-bit shift register)

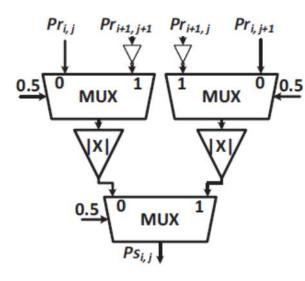
"Good" Correlation

Edge-detection calculation (Roberts cross operation):

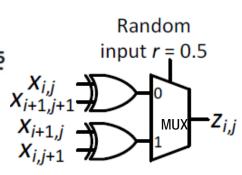
$$s_{i,j} = \frac{1}{2}(|r_{i,j} - r_{i+1,j+1}| + |r_{i,j+1} - r_{i+1,j}|)$$



(a) Conventional non-SC-implementation



(b) Direct SC-based implementation^[1]



(c) SC-based design exploiting correlation^[2]

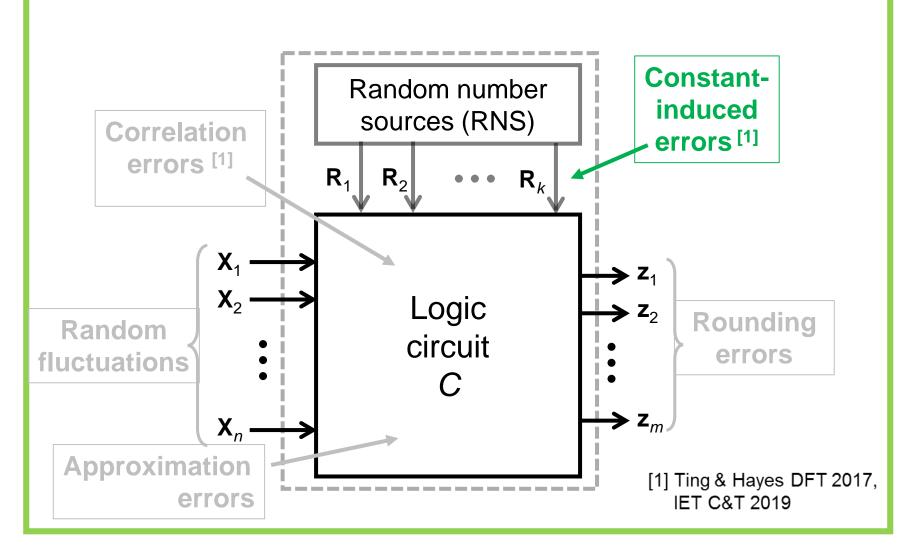
[1] Li et al. *IEEE-TVLSI* 2014

[2] Alaghi & Hayes DAC 2013

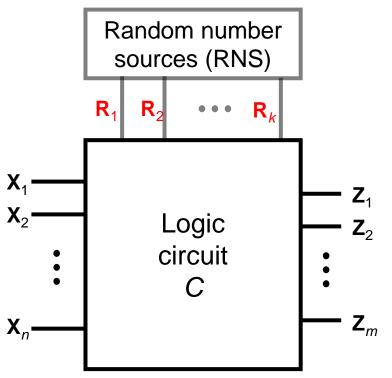
Correlation Summary

- Correlation is an inherent and complex feature of SC which affects accuracy and functionality.
- Decorrelation is usually needed for accurate operation of larger circuits.
- Isolators provide a promising decorrelation method.
- Interestingly, correlation can sometimes be used as a resource to simplify SC, as in edge detection
- There's a lot about correlation and decorrelation we still don't understand

An Unexpected Source of Inaccuracy

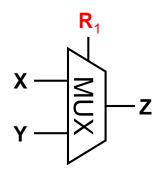


Constant-Induced Errors



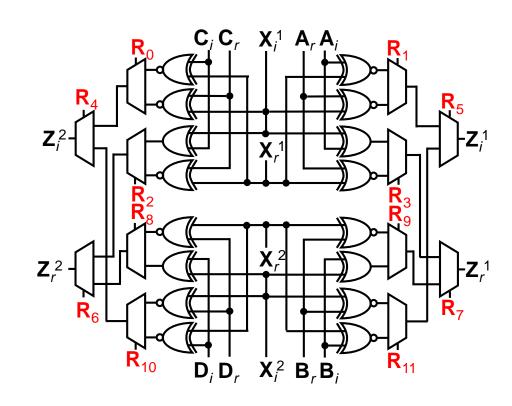
- Constant inputs R_i are essential in SC design
- We found that these constants
 - Introduce significant random fluctuation errors
 - But the errors are completely removable!

Constants in Stochastic Circuits



Standard scaled adder

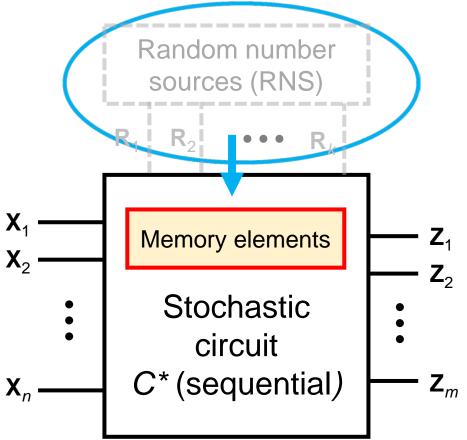
R_i denotes SNs with constant value 0.5



Complex matrix multiplier for quantum circuit simulation [Paler et al. DFT 2013]

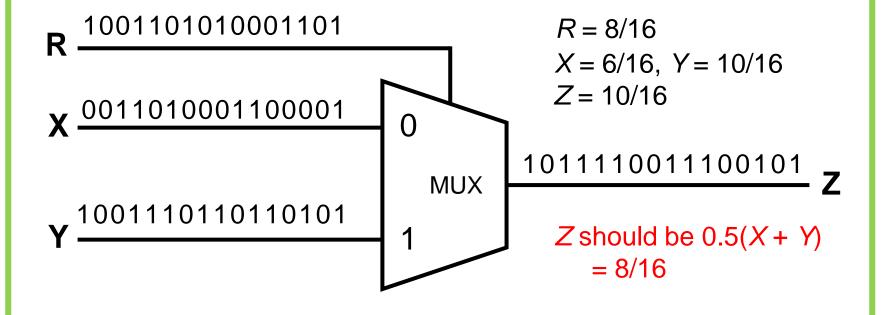
Constant-Induced Errors

We can eliminate constant inputs by transferring their function to memory. via algorithm *CEASE* [Ting & Hayes DFT 2017]



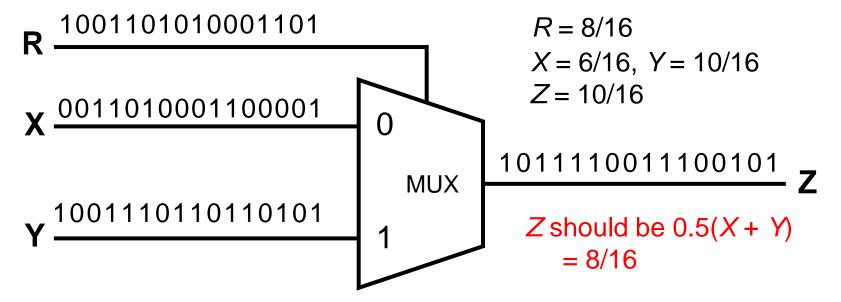
Constant-Induced Errors: Adder

- R is a constant SN of value 0.5
- It selects half the bits of Z from X and half from Y on average



Constant-Induced Errors: Adder

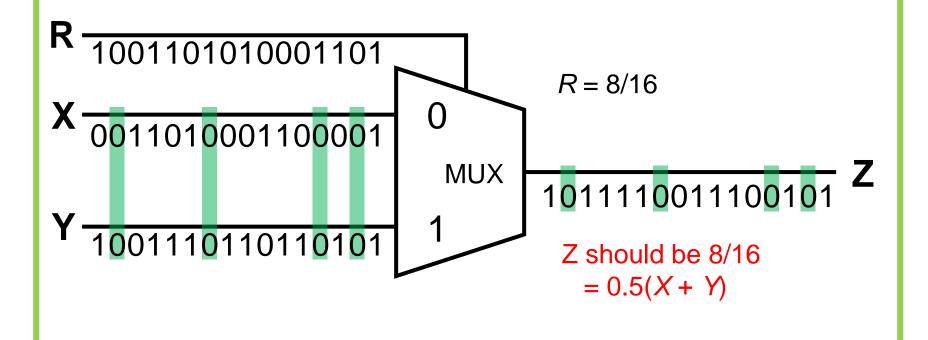
- R is a constant SN of value 0.5
- It selects half the bits of Z from X and half from Y on average



R affects both the number and quality of the samples of X and
 Y due to its random fluctuations

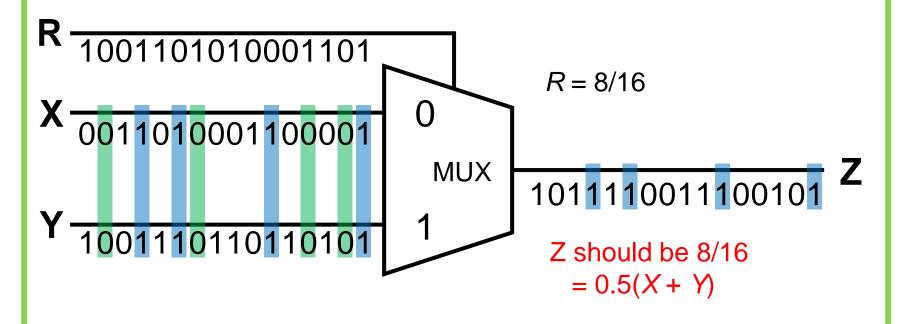
Constant-Induced Errors: Adder

• Consider the adder's response to xy = 00 (green)



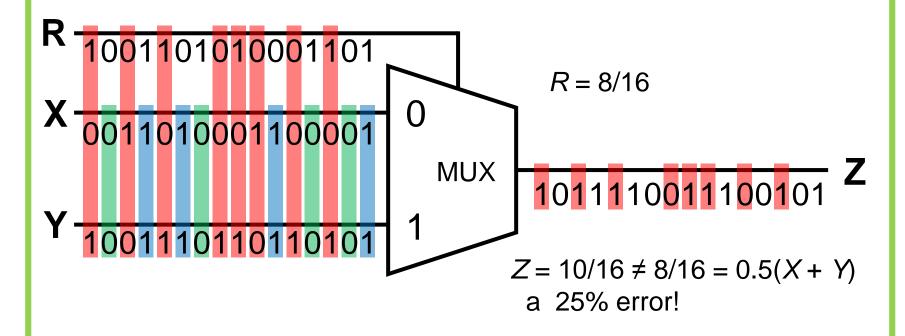
Constant-Induced Errors: Adder

- Consider the adder's response to xy = 00 (green)
- Now consider the adder's response to xy = 11 (blue)
- In both cases Z is exact and error-free

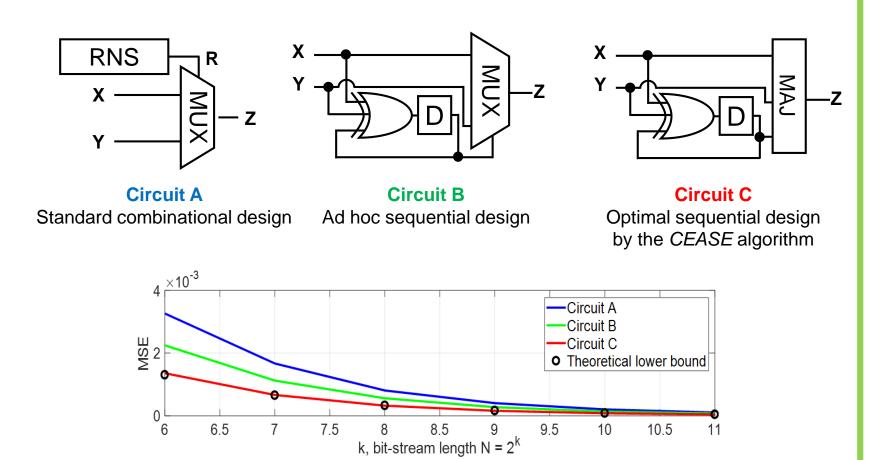


Constant-Induced Errors: Adder

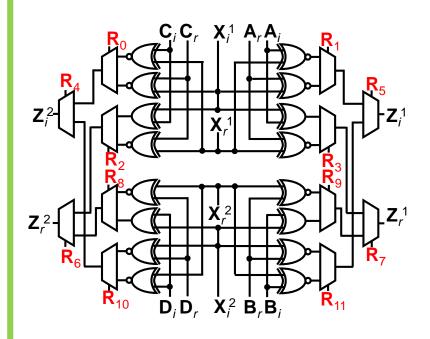
- Finally, consider the adder's responses to xy = 01 and 10 (red)
- We expect the responses to be half 0s and half 1s, but 6 instead of the expected 4 logical 1s are produced



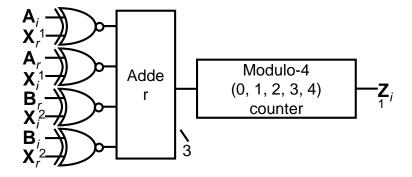
Constant-Free Adders



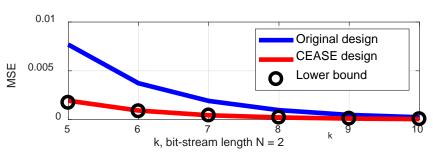
Constant-Free Matrix Multiplier



Original stochastic design for the matrix multiplier design [Paler et al. 2013]

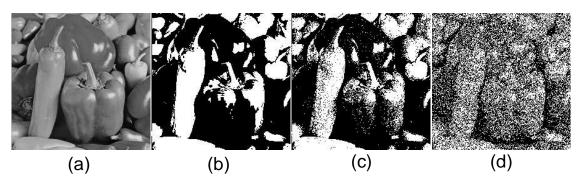


Constant-free *CEASE* design for the output \mathbf{Z}_{i}^{1} [Ting & Hayes. 2019]



Exploiting Randomness

- Uncontrolled randomness in SC leads to low accuracy.
- Can we take advantage of SC's intrinsic randomness?
- Some applications benefit from randomness, but the amount of randomness must be carefully controlled
- Example: Dithering, which SC can provide automatically.

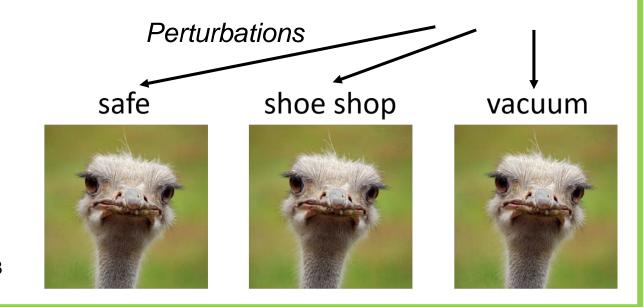


(a) Original grayscale image, (b) binarized image, (c) binarized image with good dithering, (d) binarized image with excessive dithering.

[Ting & Hayes, ICCAD 2019, to appear]

Ex. 2: Hardening Neural Neworks

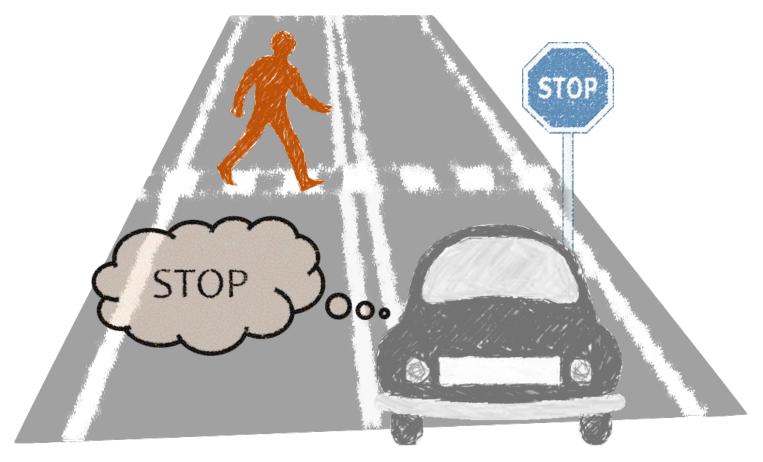
- Adding carefully designed perturbations to an image can lead NNs to misclassify it.
 This is called an adversarial attack
- Attack on the Inception-v3 classifier [1]



[1] Chen et al. AAAI 2018

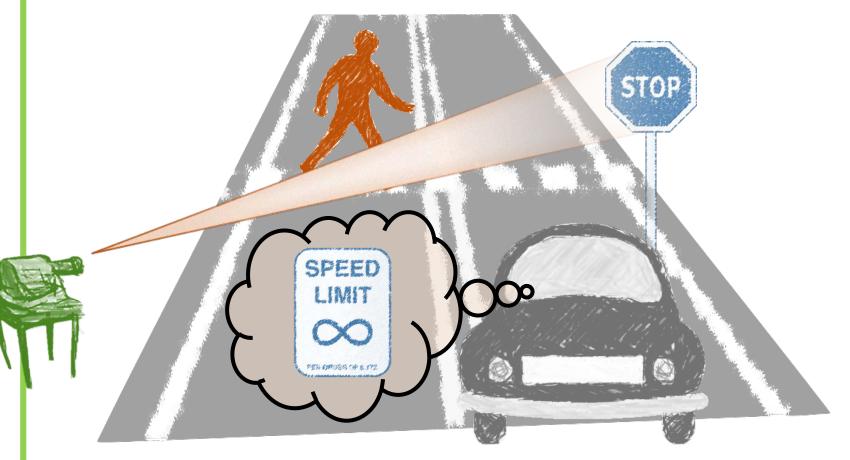
Ex. 3: Security Threat

Autonomous car using DNN for traffic sign recognition



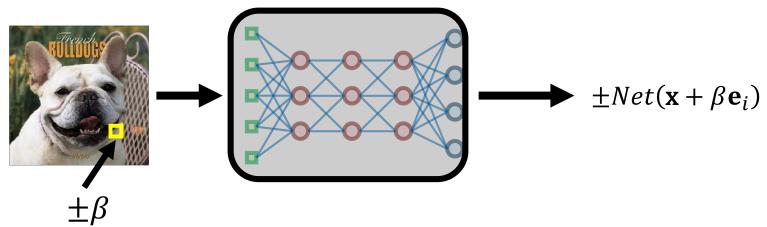
Ex. 3: Security Threat (contd)

Autonomous car using DNN for traffic sign recognition



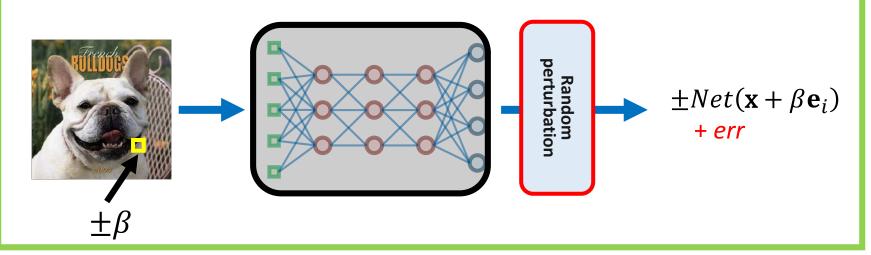
Attack on Black-Box NN

- Black-box setting:
 - DNN's implementation is concealed
 - Details like number of layers are unknown to the attacker
- Zeroth-order attack^[1]:
 - Attacker sends test images to DNN
 - Output responses are leveraged to generate a black-box attack



Attack on Black-Box NN (contd)

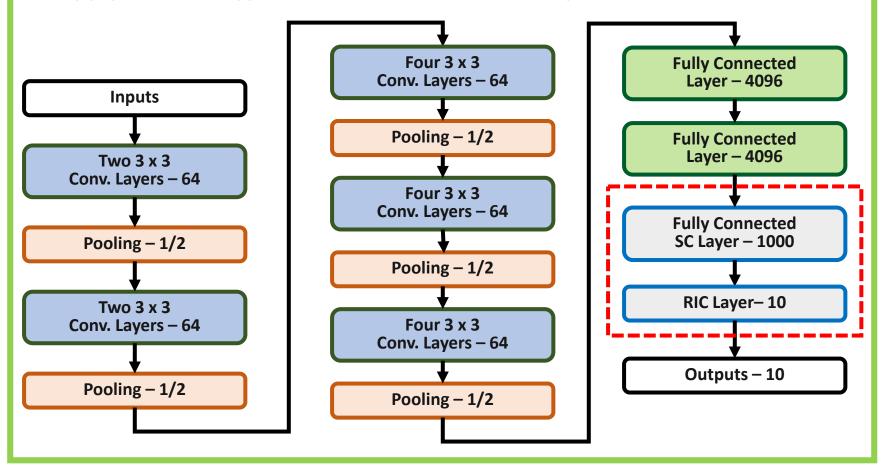
- Make black-box attacks costlier to generate:
 - Add random perturbations to the input-output responses via an SC layer
 - The DNN must be trained with the added randomness, so it learns to operate in noisy environments



VGG-19 NN Trained on CIFAR-10 (contd) Four 3 x 3 **Fully Connected** Conv. Layers – 64 Layer - 4096 Inputs Pooling -1/2**Fully Connected** Layer - 4096 Two 3 x 3 Conv. Layers - 64 Four 3 x 3 Conv. Layers - 64 **Fully Connected Layer - 1000** Pooling -1/2Pooling -1/2Two 3 x 3 Outputs - 10 Four 3 x 3 Conv. Layers – 64 Conv. Layers - 64 Pooling - 1/2 Pooling – 1/2

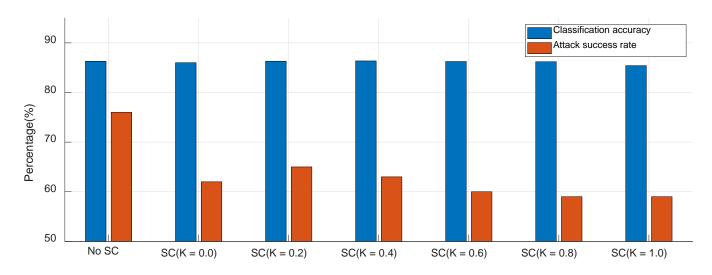
VGG-19 NN Trained on CIFAR-10 (contd)

- Replace last fully-connected layer with an SC implementation.
- Apply ZOO^[1], a type of black-box attack, on SC-protected NN



Experimental Results

- Attack success rate (ASR) is the proportion of successful attacks generated within 5,000 optimization iterations
- ASR is reduced from 76% down to 59% without affecting classification accuracy



[Ting & Hayes, ICCAD 2019, to appear]

Summary

- Stochastic unary circuits offer the advantages of simple circuitry, low power, bio compatibility, error tolerance, and progressive precision
- Their disadvantages are limited application range, slow calculation, low accuracy, and complex design trade-offs
- Careful design can mitigate many of the disadvantages of stochastic computing
- Some features like randomness and correlation can be either a blessing or a curse
- Many aspects of SC behavior are still poorly understood

Acknowledgements

 Ph.D. students Armin Alaghi, Sean Chen, Paishun Ting, and Tim Baker.

- Collaborators at the University of Stuttgart: Florian Neugebauer and Ilia Polian
- Support from the U.S. National Science Foundation and the German Alexander von Humboldt Foundation