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• Unary computing has ancient origins, and is frequently 
reinvented in different forms.

• A good starting point is the paper “Unary Processing“ by 
W.J. Poppelbaum et al. in Advances in Computers, 1987

• Their definition of unary: Any representation of information 
in which all digits have the same weight.

• They classify unary processors into two major forms:

Deterministic Stochastic
Compact representation Sparse representation
Rapid calculation Slower calculation
Complex circuitry Simple circuitry
Low noise immunity High noise immunity

Unary Computing

4John P. Hayes, Phoenix, June 2019



• Primary characteristics:
Sparse representation
Slower calculation
Simple circuitry
High noise immunity 

• Secondary characteristics:
Lower accuracy
Lower power
Massive parallelism
Biological compatibility
Complex behavior

Stochastic Computing
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• Goal
Chip that can be implanted in the human eye to replace the 
functions of a damaged retina

• Structure and function
Array of pixel processors that sense and process light images, 
and map them to electrical pulse streams that can be injected 
into the optic nerve and sent to the brain

Motivating Application: Retinal Implant
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Unary data 
stream

Pixel-level 
stochastic
processor

Input 
image

[Alaghi et al., DAC 2013]



• Requirements
Massive parallelism
Tiny processors
Tiny power dissipation
Biological compatibility

• Stochastic computing appears uniquely qualified to meet all 
these requirements

Retinal Implant (contd)
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Retinal Implant (contd)

Retinal 
implant

John P. Hayes, Phoenix, June 2019

Input image

Edges detected by
array of stochastic 
processing elements

Stochastic
edge 
detector 
element

Edge detector output after: 4 32 256
Clock cycles



• In a nutshell, SC is computing with (pseudo) random bit-
streams, i.e. unary sequences, that represent probabilities 

• Advantages
• Small size, low power, and high error tolerance
• Use (or not) of conventional logic technologies like CMOS
• Progressive precision
• Bio-compatibility
• Randomness

• Disadvantages
• Low accuracy and long computing time
• Special design requirements
• Complex accuracy/time/cost trade-offs
• Randomness

• Our Motivation
• SC is well suited to neuromorphic and AI applications

So What is Stochastic Computing?
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• Neuromorphic computing

Spike train of 
neural impulses:

Stochastic number:

• Quantum computing

Analog and digital aspects:   |Ψ〉 =

Signal states (qubits) are probabilistic

Related Technologies
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c0 0 + c1 1

ck
2 = probability of Ψ= k
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Stochastic Numbers (SNs)
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• An SN is a (pseudo) random  bit-stream X in which each 
bit has a probability X of being 1.

• X’s numerical value is�𝑋𝑋= (no. of 1s in X)/(length N of X)
• Examples of SNs:

16% inaccuracy

Target (exact) 
value Bit-pattern Length Measured 

(estimated) value

X = 0.5 X = 1010 N = 4 �𝑋𝑋 = 2/4 = 0.5
X = 0.5 X = 01010110 N = 8 �𝑋𝑋 = 4/8 = 0.5

X = 0.75 X = 11011011101 N = 12 �𝑋𝑋 = 8/12 = 0.75
X = 0.75 X = 1101101 N = 8 �𝑋𝑋 = 5/8 = 0.625

John P. Hayes, Phoenix, June 2019



SN Formats: Unipolar and Bipolar

• If an SN X’s value is interpreted as X = pX, only positive numbers 
are represented. This is unipolar format.

• If X’s value is interpreted as 2pX − 1, then positive and negative 
numbers can be represented. This is bipolar format.

• Also data must be scaled to lie in the unit interval [0,1]
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Unipolar: 𝑋𝑋 = 𝑝𝑝𝑋𝑋

0 1
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0.5
1

-1
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Bipolar: 𝑋𝑋 = 2𝑝𝑝𝑋𝑋 − 1

𝑿𝑿

0 1
0

1
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Application Areas for SC

• Analog and hybrid analog-digital tasks such as control systems and 
small neural networks

• Early work from 1960s – 2000s
• Several SC applications have been investigated, but only a few 

have been implemented in hardware
• Recent breakthroughs:

• Decoding chips for low density parity check (LDPC) error-
correcting codes [Naderi et al. 2011]

• Image-processing circuits [Li & Lilja 2011], [Alaghi et al. 2013]
• General synthesis techniques for stochastic circuits: [Qian et al. 

2011], [Alaghi & Hayes 2012]
• Applications to (hybrid) deep neural networks
• Applications enabled by more accurate SC methods
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A Little History
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 Dates Topics References 
1967 - 79 Definition and basic concepts of SC Gaines 1967 

Poppelbaum 1967 
1980 -1999 Advances in the theory of SC 

Small applications of SC, e.g. to  
   controller design 

Jeavons et al. 1994 
Toral et al. 1990 

2000 - present Application to decoding of LDPC 
   error-correcting codes 
General circuit design methods 
Application to image processing,  
  neural nets, etc. 
Advances in the theory of SC 

Gaudet & Rapley 2003 
Qian et al. 2011 
Alaghi & Hayes 2012 
 
(Many) 



Two Faces of a Stochastic Circuit
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• A logic circuit C in which a number X is encoded by a randomized bit-
stream X whose numerical value depends on bit probabilities

• The design target is some arithmetic function, in this case,
𝐹𝐹 𝑋𝑋1,𝑋𝑋2 = −0.25 × (𝑋𝑋1 + 𝑋𝑋2)

• F depends in a non-obvious way on C’s logic function, in this case,
𝑓𝑓 𝑥𝑥1, 𝑥𝑥2, 𝑟𝑟1, 𝑟𝑟2, 𝑟𝑟3 = 𝑥𝑥1∧ 𝑟̅𝑟1 ∨ 𝑥𝑥2∧ 𝑟𝑟1 ⊕ (𝑟𝑟2∨ 𝑟𝑟3)

and on the input (bipolar) number values, and ancillary random constants

x2

x1 0

1

r1

101110110111

r2
r3

110110010101

011000101011

011001011100

101100010011

110110010101

111101011111
001011001010 z

MUX
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Stochastic Circuits (contd)
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Stochastic 
multiplier

• Key advantages: low hardware cost and power

ZX
Y

Conventional
binary multiplier

Scaled adder
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• Binary to stochastic
conversion:

• Stochastic to binary
conversion:

Data Conversion Circuits
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CounterX BX

BX

Binary 
number

N

N

A

B
A>B X

Comparator

Random number RN

SNG

D D D
RNS

LFSR

D

pX ≅ BX/2N

Stochastic 
number

Random number 
source R

SNGBX X
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Accuracy of SNs
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• Longer bit-streams tend to provide better value estimates
• But length grows exponentially with desired precision

Exact value X = 0.5

Estimated
value

X

Precision k as bit-stream length grows

John P. Hayes, Phoenix, June 2019



Stochastic Circuit Structure
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Logic
circuit

C

X1

X2

Xn

Random number 
sources (RNS)

R1 R2 Rk

z1

z2

zm

User-supplied 
variable inputs

Ancillary constants
(usually of value 0.5)

Standard 
assumption
All Ri and Xj
inputs are
uncorrelated
(Bernoulli 
sequences)
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Sources of Inaccuracy
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Logic
circuit

C

X1

X2

Xn

Random number 
sources (RNS)

R1 R2 Rk

z1

z2

zm

Approximation 
errors

Random 
fluctuations

Correlation 
errors [1]

Rounding 
errors
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[1] Ting & Hayes ICCD 2016
[2] Ting & Hayes DFT 2017

Constant-
induced
errors [2]



• Correlation is an inherent part of SC because interacting SNs 
produce results that are dependent, often in subtle ways.

• Unlike random fluctuation errors, correlation errors cannot be 
eliminated just by increasing bit-stream length.

• Decorrelation is a solution, but it’s expensive (and tricky).

Correlation Problem
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Length of (output) bit-stream 
Z

Value 
pZ

1

0
Exact value p*Z

Estimated value pZCorrelation 
error
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Correlation is Hard to Measure
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Correlation: AND Gate Multiplier
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X1
X2

Z

• p(Z) = p(X1) p(X2), which we write as Z = X1X2, so an AND 
gate is a multiplier of SNs.

• This is accurate only if X1 and X2 are uncorrelated, that is, 
statistically independent.

• What if the AND inputs are correlated?  Two viewpoints:
• The AND becomes an inaccurate multiplier. For example, if 

X1= X2 = X, then p(Z) = p(X).
• It implements a different function accurately.

John P. Hayes, Phoenix, June 2019



AND Gate Correlation
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• Squaring: Suppose X1 = X2 = X and 
the target function is X 2, i.e., squaring
The function implemented is Z = X.

• Regeneration: Costly way to compute X 2.

• Isolation: Less costly way to compute X 2.

x z

R2

SNG

R1

SNG

ZBX

John P. Hayes, Phoenix, June 2019

X

Counter

RN

Z
SNG

X Z
D

flip-flop



Isolation-Based Decorrelation (IBD)
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• Most stochastic circuits are designed to work accurately only 
with input SNs that are independent (Bernoulli) sequences X =
x[0],x[1],x[2], … where x[i] denotes the bit at time (clock cycle) i.

• IBD exploits the temporal independence among successive bits 
of X. If SN X = X[0] is delayed by i > 1 cycles, then X[0] and its 
delayed version X[i] are uncorrelated.

• Problem: Where do we insert isolators in a stochastic circuit to 
ensure sufficient decorrelation?  How do we optimize their 
number?  [Ting and Hayes, ICCD 2016]

John P. Hayes, Phoenix, June 2019



IBD Example 1
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• Using IBD, we can implement a good squarer thus:

• This reduces correlation errors considerably. 
• Now let's concatenate 2 decorrelated squarers to compute X4.

• This circuit actually computes X 3 instead of X4 !

X

1
Z

1

X[0]

X[1]

X[0]X[1]

X[1]X[2]

X[0]X[1]X[1]X[2] 

X Z
1

Isolator

John P. Hayes, Phoenix, June 2019

= X[0]X[1]X[2] 

X[0]

X[1] = X shifted by 1 clock cycle



IBD Example 2
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• This is a “system” composed of three library modules M1, M2, M3 all of 
whose inputs we want to decorrelate.

• It computes the polynomial  Z = 0.5WV(X + Y – 2XY)3 + 0.5W2V

X
Y

W Z

V

M1a b
c d

e

S
T

U 1

0

0.5M2

M3
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IBD Example 2 (contd)
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X
Y

W Z

V

M1a b
c d

e

S
T

U 1

0

0.5

3

1
1

2

1

M2

M3

denotes a sequence of n isolators (forming an n-bit shift register)n
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“Good” Correlation

[1] Li et al. IEEE-TVLSI 2014
[2] Alaghi & Hayes DAC 2013

(a) Conventional  non- (b) Direct SC-based 
SC-implementation implementation[1]

MUX

(c) SC-based design 
exploiting correlation[2]

Edge-detection calculation
(Roberts cross operation):

John P. Hayes, Phoenix, June 2019



• Correlation is an inherent and complex feature of SC which 
affects accuracy and functionality.

• Decorrelation is usually needed for accurate operation of 
larger circuits. 

• Isolators provide a promising decorrelation method.

• Interestingly, correlation can sometimes be used as a 
resource to simplify SC, as in edge detection

• There’s a lot about correlation and decorrelation we still 
don’t understand 

Correlation Summary
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An Unexpected Source of Inaccuracy
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Logic
circuit

C

X1

X2

Xn

Random number 
sources (RNS)

R1 R2 Rk

z1

z2

zm

Approximation 
errors

Random 
fluctuations

Correlation 
errors [1]

Rounding 
errors
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Constant-
induced
errors [1]
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Constant-Induced Errors

• Constant inputs Ri are 
essential  in SC design

• We found that these 
constants 
• Introduce significant 

random fluctuation errors
• But the errors are

completely removable!

Logic
circuit

C

X1

X2

Xn

Random number 
sources (RNS)

R1 R2 Rk

Z1

Z2

Zm
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Constants in Stochastic Circuits

35

M
U

X

Y
Z

X

R1

Standard scaled adder

Ri denotes SNs with 
constant value 0.5

Complex matrix multiplier for quantum 
circuit simulation [Paler et al. DFT 2013]

AiAr

R3

Xr
1

Xi
1

R1

R5

Zi
1

BiBr

R9

Xr
2

Xi
2 R11

R7

Zr
1

Ci Cr

R2

R0

R4

Zi
2

Di Dr

R8

R10

R6

Zr
2
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Constant-Induced Errors

We can eliminate 
constant inputs by 
transferring their 
function to memory. 
via algorithm CEASE
[Ting & Hayes DFT 2017]

Stochastic 
circuit

C* (sequential)

X1

X2

Xn

Random number 
sources (RNS)

R1 R2 Rk

Z1

Z2

Zm

Memory elements
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Constant-Induced Errors: Adder

0

1

ZMUX

X

Y

R

1011110011100101

1001101010001101

0011010001100001

1001110110110101

• R is a constant SN of value 0.5
• It selects half the bits of Z from X and half from Y on average

R = 8/16
X = 6/16, Y = 10/16
Z = 10/16

Z should be 0.5(X + Y)
= 8/16

John P. Hayes, Phoenix, June 2019
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Constant-Induced Errors: Adder

0

1

ZMUX

X

Y

R

1011110011100101

1001101010001101

0011010001100001

1001110110110101

• R is a constant SN of value 0.5
• It selects half the bits of Z from X and half from Y on average

R = 8/16
X = 6/16, Y = 10/16
Z = 10/16

Z should be 0.5(X + Y)
= 8/16

John P. Hayes, Phoenix, June 2019

• R affects both the number and quality of the samples of X and 
Y due to its random fluctuations
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Constant-Induced Errors: Adder

0
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• Consider the adder’s response to xy = 00 (green)

R = 8/16

Z should be 8/16
= 0.5(X + Y)
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Constant-Induced Errors: Adder
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• Consider the adder’s response to xy = 00 (green)
• Now consider the adder’s response to xy = 11 (blue)
• In both cases Z is exact and error-free

• Consider the adder’s response to xy = 00 (green)

R = 8/16

Z should be 8/16
= 0.5(X + Y)
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Constant-Induced Errors: Adder
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R = 8/16

Z = 10/16 ≠ 8/16 = 0.5(X + Y)
a  25% error!

• Finally, consider the adder’s responses to xy = 01 and 10 (red)
• We expect the responses to be half 0s and half 1s, 

but 6 instead of the expected 4 logical 1s are produced
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Constant-Free Adders

M
U

X

D

X
Y Z

D

X
Y

Z

M
A

J

M
U

X

Y
Z

RNS
X

R

Circuit A
Standard combinational design

Circuit B
Ad hoc sequential design

Circuit C
Optimal sequential design
by the CEASE algorithm
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Constant-Free Matrix Multiplier

5 6 7 8 9 10
k, bit-stream length N = 2 k
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0.01
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CEASE design
Lower bound
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2
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(0, 1, 2, 3, 4) 
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Original stochastic design for the 
matrix multiplier design [Paler et 
al. 2013]

Constant-free CEASE design for the 
output Zi

1 [Ting & Hayes. 2019]

3
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• Uncontrolled randomness in SC leads to low accuracy.
• Can we take advantage of SC’s intrinsic randomness?
• Some applications benefit from randomness, but the 

amount of randomness must be carefully controlled
• Example: Dithering, which SC can provide automatically. 

(a) Original grayscale image, (b) binarized image, (c) binarized image
with good dithering, (d) binarized image with excessive dithering.

[Ting & Hayes, ICCAD 2019, to appear]

Exploiting Randomness
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(d)(c)(b)(a)



Ex. 2: Hardening Neural Neworks
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Perturbations

[1] Chen et al. AAAI 2018

• Adding carefully designed perturbations 
to an image can lead NNs to misclassify it. 
This is called an adversarial attack

• Attack on the Inception-v3 classifier [1]



Ex. 3: Security Threat
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• Autonomous car using DNN for traffic sign recognition



Ex. 3: Security Threat (contd)

50John P. Hayes, Phoenix, June 2019

• Autonomous car using DNN for traffic sign recognition



Attack on Black-Box NN
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• Black-box setting:
 DNN’s implementation is concealed

 Details like number of layers are unknown to the attacker

• Zeroth-order attack[1]:
 Attacker sends test images to DNN

 Output responses are leveraged to generate a black-box attack

±𝛽𝛽

±𝑁𝑁𝑁𝑁𝑁𝑁 x + 𝛽𝛽𝐞𝐞𝑖𝑖



Attack on Black-Box NN (contd)
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• Make black-box attacks costlier to generate:
 Add random perturbations to the input-output responses via an

SC layer 

 The DNN must be trained with the added randomness, so it learns 

to operate in noisy environments

±𝛽𝛽

Random
 

perturbation

±𝑁𝑁𝑁𝑁𝑁𝑁 x + 𝛽𝛽𝐞𝐞𝑖𝑖
+ err



VGG-19 NN Trained on CIFAR-10 (contd)
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Two 3 x 3
Conv. Layers – 64

Pooling – 1/2 

Pooling – 1/2 

Two 3 x 3
Conv. Layers – 64

Inputs

Four 3 x 3
Conv. Layers – 64

Pooling – 1/2 

Pooling – 1/2 

Four 3 x 3
Conv. Layers – 64

Pooling – 1/2 

Four 3 x 3
Conv. Layers – 64

Fully Connected
Layer – 4096

Fully Connected
Layer – 4096

Fully Connected
Layer – 1000

Outputs – 10



VGG-19 NN Trained on CIFAR-10 (contd)
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Two 3 x 3
Conv. Layers – 64

Pooling – 1/2 

Pooling – 1/2 

Two 3 x 3
Conv. Layers – 64

Inputs

Four 3 x 3
Conv. Layers – 64

Pooling – 1/2 

Pooling – 1/2 

Four 3 x 3
Conv. Layers – 64

Pooling – 1/2 

Four 3 x 3
Conv. Layers – 64

Fully Connected
Layer – 4096

Fully Connected
Layer – 4096

Fully Connected
SC Layer – 1000

Outputs – 10

RIC Layer– 10

• Apply ZOO[1], a type of black-box attack, on SC-protected NN
• Replace last fully-connected layer with an SC implementation.



Experimental Results
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• Attack success rate (ASR) is the proportion of successful 
attacks generated within 5,000 optimization iterations

• ASR is reduced from 76% down to 59% without affecting 
classification accuracy

No SC SC(K = 0.0) SC(K = 0.2) SC(K = 0.4) SC(K = 0.6) SC(K = 0.8) SC(K = 1.0)
50

60

70

80

90

P
er

ce
nt

ag
e(

%
)

Classification accuracy
Attack success rate

[Ting & Hayes, ICCAD 2019, to appear]



Summary
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• Stochastic unary circuits offer the advantages of simple 
circuitry, low power, bio compatibility, error tolerance, 
and progressive precision

• Their disadvantages are limited application range, slow 
calculation, low accuracy, and complex design trade-offs

• Careful design can mitigate many of the disadvantages of 
stochastic computing

• Some features like randomness and correlation can be 
either a blessing or a curse

• Many aspects of SC behavior are still poorly understood
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